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Many clinical applications based on deep learning and pertaining to radiology have been

proposed and studied in radiology for classification, risk assessment, segmentation

tasks, diagnosis, prognosis, and even prediction of therapy responses. There are

many other innovative applications of AI in various technical aspects of medical

imaging, particularly applied to the acquisition of images, ranging from removing image

artifacts, normalizing/harmonizing images, improving image quality, lowering radiation

and contrast dose, and shortening the duration of imaging studies. This article will

address this topic and will seek to present an overview of deep learning applied to

neuroimaging techniques.
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INTRODUCTION

Artificial intelligence (AI) is a branch of computer science that encompasses machine learning,
representation learning, and deep learning (1). A growing number of clinical applications based on
machine learning or deep learning and pertaining to radiology have been proposed in radiology
for classification, risk assessment, segmentation tasks, diagnosis, prognosis, and even prediction
of therapy responses (2–10). Machine learning and deep learning have also been extensively
used for brain image analysis to devise imaging-based diagnostic and classification systems of
strokes, certain psychiatric disorders, epilepsy, neurodegenerative disorders, and demyelinating
diseases (11–17).

Recently, due to the optimization of algorithms, the improved computational hardware, and
access to large amount of imaging data, deep learning has demonstrated indisputable superiority
over the classic machine learning framework. Deep learning is a class of machine learning that
uses artificial neural network architectures that bear resemblance to the structure of human
cognitive functions (Figure 1). It is a type of representation learning in which the algorithm learns
a composition of features that reflect a hierarchy of structures in the data (18). Convolutional
neural networks (CNN) and recurrent neural networks (RNN) are different types of deep learning
methods using artificial neural networks (ANN).

AI can be applied to a wide range of tasks faced by radiologists (Figure 2). Most initial deep
learning applications in neuroradiology have focused on the “downstream” side: using computer
vision techniques for detection and segmentation of anatomical structures and the detection of
lesions, such as hemorrhage, stroke, lacunes, microbleeds, metastases, aneurysms, primary brain
tumors, and white matter hyperintensities (6, 9, 15, 19). On the “upstream” side, we have just
begun to realize that there are other innovative applications of AI in various technical aspects of
medical imaging, particularly applied to the acquisition of images. A variety of methods for image
generation and image enhancement using deep learning have recently been proposed, ranging from
removing image artifacts, normalizing/harmonizing images, improving image quality, lowering
radiation and contrast dose, and shortening the duration of imaging studies (8, 9, 15).
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FIGURE 1 | Example of components of Biologic Neural Network (A) and Computer Neural Network (B). Reprinted with permission from Zaharchuk et al. (15).

Copyright American Journal of Neuroradiology.

As RNNs are commonly utilized for speech and language
tasks, the deep learning algorithms most applicable to radiology
are CNNs, which can be efficiently applied to image segmentation
and classification. Instead of using more than billions of
weights to implement the full connections, CNNs can mimics
mathematic operation of convolution, using convolutional and
pooling layers (Figure 1) and significantly reduce the number
of weights. CNNs can also allow for spatial invariance. For
different convolutional layers, multiple kernels can be trained
and then learn many location-invariant features. Since important
features can be automatically learned, information extraction
from images in advance of the learning process is not necessary.
Therefore, CNNs are relatively easy to apply in clinical practice.

There are many challenges related to the acquisition and
post-processing of neuroimages, including the risks of radiation
exposure and contrast agent exposure, prolonged acquisition
time, and image resolution. In addition, to expert parameter
tuning of scanners always required to optimize reconstruction
performance, especially in the presence of sensor non-idealities

and noise (20). Deep learning has the opportunity to have
a significant impact on such issues and challenges, with
fewer ethical dilemmas and medical legal risks compared to
applications for diagnosis and treatment decision making (21).
Finally, these deep learning approaches will make imaging much
more accessible, from many perspectives, including cost, patient
safety, and patient satisfaction.

Published deep learning studies focused on improving

medical imaging techniques are just beginning to enter

the medical literature. A Pubmed search on computer-
aided diagnosis in radiology, machine learning, and deep

learning for the year 2018 yielded more than 5,000 articles.
The number of publications addressing deep learning as
applied to medical imaging techniques is a small fraction
of this number. Although many studies are not focused
on neuroimaging, their techniques can often be adapted for
neuroimaging. This article will address this topic and will
seek to present an overview of deep learning applied to
neuroimaging techniques.
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FIGURE 2 | Imaging value chain. While most AI applications have focused on the downstream (or right) side of this pathway, such the use of AI to detect and classify

lesions on imaging studies, it is likely that there will be earlier adoption for the tasks on the upstream (or left) side, where most of the costs of imaging are concentrated.

USING DEEP LEARNING TO REDUCE THE
RISK ASSOCIATED WITH IMAGE
ACQUISITION

There aremany risks associated with different image acquisitions,
such as ionizing radiation exposure and side effect of contrast
agents. Deep learning based optimizing acquisition parameters
is crucial to achieve diagnostically acceptable image quality at the
lowest possible radiation dose and/or contrast agent dose.

MRI
Gadolinium-based contrast agents (GBCAs) have become
indispensable in routine MR imaging. Though considered safe,
CBCAs were linked with nephrogenic systemic fibrosis, which is
a serious, debilitating, and sometimes life-threatening condition.
There is ongoing discussion regarding the documented
deposition of gadolinium contrast agents in body tissues
including the brain, especially for those patients who need
repeated contrast administration (22). Recent publications have
reported the gadolinium deposition in the brain tissue, most
notably in the dentate nuclei and globus pallidus (23, 24). This
deposition can probably be minimized by limiting the dose
of gadolinium used (25). Unfortunately, low-dose contrast-
enhanced MRI is typically of insufficient diagnostic image
quality. Gong et al. (26) implemented a deep learning model
based on an encoder-decoder CNN to obtain diagnostic quality
contrast-enhanced MRI with low-dose gadolinium contrast. In
this study 60 patients with brain abnormalities received 10% low-
dose preload (0.01 mmol/kg) of gadobenate dimeglumine, before

perfusion MR imaging with full contrast dosage (0.1 mmol/kg).
Pre-contrast MRI and low-dose post-contrast MRI of training
set were introduced as inputs, and full dose post-contrast MRI
as Ground-truth. The contrast uptake in the low-dose CE-MRI
is noisy, but does include contrast information. Through the
training, the network learned the guided denoising of the noisy
contrast uptake extracted from the difference signal between
low-dose and zero-dose MRIs, and then combine them to
synthesize a full-dose CE-MRI. The results demonstrated that
the deep learning algorithm was able to extract diagnostic quality
images with gadolinium doses 10-fold lower than those typically
used (Figure 3).

CT
Computed Tomography (CT) techniques are widely used in
clinical practice and involve a radiation risk. For instance, the
radiation dose associated with a head CT is the same as 200
chest X-rays, or the amount most people would be exposed to
from natural sources over 7 years. CT acquisition parameters
can be adjusted to reduce the radiation dose, including reducing
kilovoltage peak (kVp), milliampere-seconds (mAs), gantry
rotation time, and increasing acquisition pitch. However, all
these approaches also reduce image quality. Since an insufficient
number of photons in the projection domain can lead to excessive
quantum noise, the balance between image quality and radiation
dose is always a trade-off.

Various image denoising approaches for CT techniques have
been developed. Iterative reconstruction has been used, but
sparsely, in part due to significant computational costs, time
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FIGURE 3 | Example of low-dose contrast-enhaced MRI. Results from a deep network for predicting a 100% contrast dose image from a study obtained with 10% of

the standard contrast dose. This example MRI is abtained from a patient with menigioma. Such methods may enable diagnostic quality images to be acquired more

safely in a wider range of patients (Courtesy of Subtle Medical, Inc.).

delays between acquisition and reconstruction, and a suboptimal
“waxy” appearance of the augmented images (27, 28). Traditional
image processing methods to remove image noise are also
limited, because CT data is subject to both non-stationary and
non-Gaussian noise processes. Novel denoising algorithms based
on deep learning have been studied intensively and showed
impressive potential (29). For example, Xie et al. (30) used a
deep learning method based on a GoogLeNet architecture to
remove streak artifacts due to missing projections in sparse-
view CT reconstruction. The artifacts from low dose CT imaging
were studied by residual learning, and then subtracted from
the sparse reconstructed image to recover a better image. These
intensively reconstructed images are comparable to the full-
view projection reconstructed images. Chen et al. (28, 31)
applied a residual encoder-decoder CNN, which incorporated
a deconvolution network with shortcut (“bypass”) connections
into a CNN model, to reduce the noise level of CT images.
The model learned a feature mapping from low- to normal-dose
images. After the training, it achieved a competitive performance
in both qualitative and quantitative aspects, while compared with
other denoising methods. Kang (27) applied a CNN model using
directional wavelets for low-dose CT reconstruction. Compared
to model-based iterative reconstruction methods, this algorithm
can remove complex noise patterns from CT images with greater
denoising power and faster reconstruction time. Nishio et al.
(32) trained auto-encoder CNN for pairs of standard-dose
(300mA) CT images and ultra-low-dose (10mA) CT images,
and then used the trained algorithm for patch-based image
denoising of ultra-low-dose CT images. The study demonstrated
the advantages of this method over block-matching 3D (BM3D)
filtering for streak artifacts and other types of noise. Many

other deep learning-based approaches have been proposed in
radiation-restricted applications, such as adversarially trained
networks, sharpness detection network, 3D dictionary learning,
and discriminative prior-prior image constrained compressed
sensing (33–36).

Reconstruction algorithms to denoise the output low-quality
images or remove artifacts have been studied intensively (27,
28, 30–32). Gupta et al. (37) implemented a relaxed version
of projected gradient descent with a CNN for sparse-view CT
reconstruction. There is a significant improvement over total
variation-based regularization and dictionary learning for both
noiseless and noisy measurements. This framework can also be
used for super-resolution, accelerated MRI, or deconvolution,
etc. Yi et al. used adversarially trained network and sharp
detection network to achieve sharpness-aware low-dose CT
denoising (34).

Since matched low- and routine-dose CT image pairs are
difficult to obtain in multiphase CT, Kang et al. (38) proposed
a deep learning framework based on unsupervised learning
technique to solve this problem. They applied a cycle-consistent
adversarial denoising network to learn themapping between low-
and high-dose cardiac phases. Their network did not introduce
artificial features in the output images.

Sparse-Data CT
The reconstruction of Sparse-data CT always compromises
structural details and suffers from notorious blocky artifacts.
Chen et al. (39) implemented a Learned experts’ assessment-
based reconstruction network (LEARN) for sparse-data CT. The
network was evaluated with Mayo Clinic’s low-dose challenge
image data set and was proved more effectively than other
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methods in terms of artifact reduction, feature preservation, and
computational speed.

PET
Radiation exposure is a common concern in PET imaging. To
minimize this potential risk, efforts have been made to reduce the
amount of radio-tracer usage in PET imaging. However, low-dose
PET is inherently noisy and has poor image quality. Xiang et al.
combined 4-fold reduced time duration 18F-fluorodeoxyglucose
(FDG) PET images and co-registered T1-weighted MRI images
to reconstruct standard dose PET (40). Since PET image quality
is to a first degree linear with true coincidence events recorded
by the camera, such a method could also be applied to reduced
dose PET. Kaplan and Zhu (41) introduced a deep learningmodel
consisting an estimator network and a generative adversarial
network (GAN). After training with simulated 10x lower dose
PET data, the networks reconstructed standard dose images,
while preserving edge, structural, and textural details.

Using a simultaneous PET/MRI scanner, Xu et al. (42)
proposed an encoder-decoder residual deep network with
concatenate skip connections to reconstruct high quality brain
FDG PET images in patients with glioblastoma multiforme using
only 0.5% of normal dose of radioactive tracer. To take advantage
of the higher contrast and resolution of the MR images, they
also included T1-weighted and T2-FLAIR weighted images as
inputs to the model. Furthermore, they employed a “2.5D” model
in which adjacent slice information is used to improve the
prediction of a central slice. These modifications significantly
reduced noise, while robustly preserving resolution and detailed
structures with comparable quality to normal-dose PET images.

These general principles were also applied by Chen et al.
to simulated 1% dose 18F-florbetaben PET imaging (43). This
amyloid tracer is used clinically in the setting of dementia of
unknown origin. A “positive” amyloid study is compatible with
the diagnosis of Alzheimer’s disease, while a negative study
essentially rules out the diagnosis (44, 45). Again, simultaneous
PET/MRI was used to acquire co-registered contemporaneous
T1-weighted and T2-FLAIR MR images, which were combined
as input along with the 1% undersampled PET image. They
showed the crucial benefit of including MR images in terms
of retaining spatial resolution, which is critical for assessing
amyloid scans. They found that clinical readers evaluating the
synthesized full dose images did so with similar accuracy to
their own intra-reader reproducibility. More recently, the same
group has demonstrated that the trained model can be applied
to true (i.e., not simulated) ultra-low dose diagnostic PET/MR
images (Figure 4).

ACCELERATE IMAGING ACQUISITION
AND RECONSTRUCT UNDER-SAMPLED
K-SPACE

Image acquisition can be time-consuming. Reducing raw data
samples or subsample k-space data can speed the acquisition, but
result in suboptimal images. Deep learning based reconstruction
methods can output good images from under-sampled datasets.

Compared to most other imaging modalities, MRI acquisition
is substantially slower. The longer acquisition time limits the
utility of MRI in emergency settings and often results in more
motion artifact. It also contributes to its high cost. Acquisition
time can be reduced by simply reducing the number of raw
data samples. However, conventional reconstruction methods
for these sparse data often produce suboptimal images. Newer
reconstruction methods deploying deep learning have the ability
to produce images with good quality from these under-sampled
data acquired with shorter acquisition times (46). This approach
has been applied in Diffusion Kurtosis Imaging (DKI) and
Neurite Orientation Dispersion and Density Imaging (NODDI).
DKI and NODDI are advanced diffusion sequences that can
characterize tissue microstructure but require long acquisition
time to obtain the required data points. Using a combination of
q-Space deep learning and of simultaneous multi-slice imaging,
Golkov et al. (47) were able to reconstruct DKI from only 12
data points and NODDI from only 8 data points, achieving
an unprecedented 36-fold scan time reduction for quantitative
diffusion MRI. These results suggest that there is considerable
amount of information buried within the limited number of data
points that can be retrieved with deep learning methods.

Another way to reduce acquisition time is to subsample k-
space data. However, naive undersampling of k-space will cause
aliasing artifact once the under-sampling rate exceeds theNyquist
conditions. Hyun et al. (48) trained a deep learning network,
using pairs of subsampled and fully sampled k-space data as
inputs and outputs respectively, to reconstruct images from sub-
sampled data. They reinforced the subsampled k-space data with
a few low-frequency k-space data to improve image contrast.
Their network was able to generate diagnostic quality images
from sampling only 29% of k-space.

Lee et al. (49) investigated deep residual networks to remove
global artifacts from under-sampled k-space data. Deep residual
networks are a special type of network that allows stacking of
multiple layers to create a very deep network without degrading
the accuracy of training. Compared to non-AI based fast-
acquisition techniques such as compressed sensing MRI (which
randomly sub-samples k-space) and parallel MRI (which uses
multiple receiver coils), Lee’s technique achieved better artifact
reduction and use much shorter computation time.

Deep learning techniques for acceleration and reconstruction
are not limited to static imaging, but are also applicable
for dynamic imaging, such as cardiac MRI. Due to inherent
redundancy within adjacent slices and repeated cycles in dynamic
imaging, the combination of under-sampling and using Neural
Networks for reconstruction seem to be the perfect solution.
Schelmper’s (50) trained CNN to learn the redundancies and the
spatio-temporal correlations from 2D cardiac MR images. Their
CNN outperformed traditional carefully handcrafted algorithms
in terms of both reconstruction quality and speed. Similarly,
Majumdar (51) address the problem of real-time dynamic MRI
reconstruction by using a stacked denoising autoencoder. They
produced superior images in shorter time, when compared to CS
based technique and Kalman filtering techniques.

Hammernik et al. (52) introduced a variational network
for accelerated Parallel Imaging-based MRI reconstruction. The
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FIGURE 4 | Example of ultra-low dose 18F-florbetaben PET/MRI. Example of a positive 18F-florbetaben PET/MRI study acquired at 0.24 mCi, ∼3% of a standard

dose. Similar image quality is present in the 100% dose image and the synthetized image, which was created using a deep neural network along with MRI information

such as T1, T2, and T2-FLAIR. As Alzheimer Disease studies are moving toward cognitively normal and younger patients, reducing dose would be helpful.

Furthermore, tracer costs could be reduced if doses can be shared.

reconstruction time was 193ms on a single graphics card, and
the MR images preserved the natural appearance as well as
pathologies that were not included in the training data set. Chen
et al. (53) also developed a deep learning reconstruction approach
based on a variational network to improve the reconstruction
speed and quality of highly undersampled variable-density
single-shot fast spin-echo imaging. This approach enables
reconstruction speeds of ∼0.2 s per section, allowing a real-
time image reconstruction for practical clinical deployment. This
study showed improved image quality with higher perceived
signal-to-noise ratio and improved sharpness, when compared
with conventional parallel imaging and compressed sensing
reconstruction. Yang et al. (54) proposed a deep architecture
based on Alternating Direction Method of Multipliers algorithm
(ADMM-Net) to optimize a compressed sensing-based MRI
model. The results suggested high reconstruction accuracy with
fast computational speed.

Several studies also used generative adversarial networks to
model distributions (low-dimensional manifolds) and generating
natural images (high-dimensional data) (35, 55). Mardani et al.
(56) proposed a compressed sensing framework using generative
adversarial networks (GAN) to model the low-dimensional
manifold of high-quality MRI. This is combined with a
compressed sensing framework, a method known as GANCS.
It offers reconstruction times of under a few milliseconds and

higher quality images with improved fine texture based on
multiple reader studies.

ARTIFACTS REDUCTION

Image denoising is an important pre-processing step in medical
image analysis, especially in low-dose techniques. Much research
has been conducted on the subject of computer algorithms
for image denoising for several decades, with varying success.
Many attempts based on machine learning (57) or deep learning
(58, 59) have been successfully implemented for denoising of
medical images.

Standard reconstruction approaches involve approximating
the inverse function with multiple ad hoc stages in a signal
processing chain. They depend on the details of each acquisition
strategy, and requires parameter tuning to optimize image
quality. Zhu et al. (20) implemented a unified framework
system called AUTOMAP, using a fully-connected deep neural
network to reconstruct a variety of MRI acquisition strategies.
This method is agnostic to the exact sampling strategy used,
being trained on pairs of sensor data and ground truth images.
They showed good performance for a wide range of k-space
sampling methods, including Cartesian, spiral, and radial image
acquisitions. The trained model also showed superior immunity
to noise and reconstruction artifacts compared with conventional
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handcrafted methods. Manjón and Coupe (59) used two-stage
strategy with deep learning for noise reduction. The first stage
is to remove the noise using a CNN without estimation of local
noise level present in the images. Then the filtered image is
used as a guide image within a rotationally invariant non-local
means filter. This approach showed competitive results for all the
studied MRI acquisitions.

Low Signal-To-Noise Ratio
MR images often suffers from low signal-to-noise ratio, such as
DWI and 3D MR images. Jiang et al. (60) applied multi-channel
feed-forward denoising CNNs, and Ran et al. (61) applied
residual Encoder-Decoder wasserstein GAN, respectively, to
restore the noise-free 3D MR images from the noisy ones.

Another MRI acquisition suffering from an inherently
low-signal-to-noise ratio is arterial spin labeling (ASL) perfusion
imaging. ASL has been used increasingly in neuroimaging
because of its non-invasive and repeatable advantages in
quantification and labeling. Repeated measurements of
control/spin-labeled paired can lead to a fair image quality,
but with the risk of motion artifacts. Ultas et al. (62) followed
a mixed modeling approach including incorporting a Buxton
kinetic model for CBF estimation, and training a deep fully
CNN to learn a mapping from noisy image and its subtraction
from the clean images. This approach produced high quality
ASL images by denoising images without estimating its noise
level. Due to a lower number of subtracted control/label pairs,
this method also reduced ASL scan and reconstruction times,
which makes ASL even more applicable in clinical protocols.
Similarly, Kim et al. demonstrated image quality improvement
using pseudocontinous ASL using data with 2 signal averages to
predict images acquired with 6 signal averages, a roughly 3-fold
speedup in imaging time (63). They also demonstrated that it was
possible to reconstruct Hadamard-encoded ASL imaging from a
subset of the reconstructed post-label delay images (though this
does not allow for any speed-up in image acquisition). Owen
et al. used a convolutional joint filter to exploit spatio-temporal
properties of the ASL signal. This filter could reduce artifacts
and improve the peak signal-to-noise ratio of ASL by up to 50%
(64). Finally, Gong et al. demonstrated the benefits of including
multi-contrast approaches (i.e., proton-density images along
with ASL difference images) with multi-lateral guided filters
and deep networks to boost the SNR and resolution of ASL
(65). They also showed that the network could be trained with
a relatively small number of studies and that it generalized to
stroke patients (Figure 5).

Spurious Noise
Proton MR spectroscopic imaging can measure endogenous
metabolite concentration in vivo. The Cho/NAA ratio has been
used to characterize brain tumors, such as glioblastoma. One
challenge is the poor spectral quality, because of the artifacts
caused by magnetic field inhomogeneities, subject movement,
and improper water or lipid suppression. Gurbani et al. (66)
applied a tiled CNN tuned by Bayesian optimization technique
to analyze frequency-domain spectra to detect artifacts. This
CNN algorithm achieved high sensitivity and specificity with

an AUC of 0.951, while compared with the consensus decision
of MRS experts. One particular type of MRS artifact is ghost
or spurious echo artifact, due to insufficient spoiling gradient
power. Kyathanahally et al. (67) implemented multiple deep
learning algorithms, including fully connected neural networks,
deep CNN, and stacked what-where auto encoders, to detect and
correct spurious echo signals. After training on a large dataset
with and without spurious echoes, the accuracy of the algorithm
was almost 100%.

Motion Artifact
MRI is susceptible to image artifacts, including motion artifacts
due to the relatively long acquisition time. Küstner et al. (68)
proposed a non-reference approach to automatically detect the
presence of motion artifacts on MRI images. A CNN classifier
was trained to assess the motion artifacts on a per-patch basis,
and then used to localize and quantify the motion artifacts on a
test data set. The accuracy of motion detection reached 97/100%
in the head and 75/100% in the abdomen. There are several other
studies on the detection or reducing of motion artifacts (69–71).
Automating the process of motion detection can lead to more
efficient scanner use, where corrupted images are re-acquired
without relying on the subjective judgement of technologists.

Metal Artifact
Artifacts resulting from metallic objects have been a persistent
problem in computed tomography (CT) images over the last four
decades. Gjesteby et al. (72) combined a CNN with the NMAR
algorithm to reduce metal streaks in critical image regions. The
strategy is able to map metal-corrupted images to artifact-free
monoenergetic images.

Crosstalk Noise
Attenuation correction is a critical procedure in PET imaging for
accurate quantification of radiotracer distribution. For PET/CT,
the attenuation coefficients (µ) are derived from the CT
Hounsfield units from the CT portion of the examination. For
PET/MRI, attenuation coefficient (µ) has been estimated from
segmentation- and atlas-based algorithms. Maximum-likelihood
reconstruction of activity and attenuation (MLAA) is a new
method for generating activity images. It can produce attenuation
coefficients simultaneously from emission data only, without the
need of a concurrent CT or MRI. However, MLAA suffers from
crosstalk artifacts. Hwang et al. (73) tested three different CNN
architectures, such as convolutional autoencoder (CAE), U-net,
and hybrid of CAE to mitigate the crosstalk problem in the
MLAA reconstruction. Their CNNs generated less noisy and
more uniform µ-maps. The CNNs also better resolved the air
cavities, bones, and even the crosstalk problem.

Other studies have used deep learning to create CT-like
images from MRI, often but not always for the purposes of
PET/MRI attenuation correction. Nie et al. (74) applied an auto-
context model to implement a context-aware deep convolutional
GAN. It can generate a target image from a source image,
demonstrating its use in predicting head CT images from T1-
weighted MR images. This CT could be used for radiation
planning or attenuation correction. Han (75) proposed a deep
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FIGURE 5 | Deep learning for improving image quality of arterial spin labeling in a patient with right-sided Moyamoya disease. Reference scan (A) requiring 8min to

collect (nex = 6). Using a rapid scan acquired in 2min (nex=1) (B), it is possible to create an image (F) with the SNR of a study requiring over 4.5min (nex = 3) (E).

The peak signal-to-noise (PSNR) performance is superior to existing de-noising methods such as (C) block matched 3D (BM3D) and (D) total generalized variation

(TGV). Such methods could speed up MRI acquisition, enabling more functional imaging and perhaps reducing the cost of scanning.

CNN with 27 convolutional layers interleaved with pooling and
unpooling layers. Similar to Nie et al., the network was trained
to learn a direct end-to-end mapping from MR images to their
corresponding CTs. This method produced accurate synthetic
CT results in near real time (9 s) from conventional, single-
sequenceMR images. Other deep learning networks, such as deep
embedding CNN by Xiang et al. (76), Dixon-VIBE deep learning
by Torrado-Carvajal et al. (77), GAN with two synthesis CNNs
and two discriminator CNNs by Wolterink et al. (78), as well
as deep CNN based on U-net architecture by Leynes et al. (79)
and Roy et al. (80), were also proposed to generate pseudo CT
fromMRI.

Liu et al tried to train a network to transform T1-weighted
head images into “pseudo-CT” images, which could be used for
attenuate calculations (81). The errors in PET SUV could be
reduced to less than 1% for most areas of the brain, about a 5-fold
improvement over existing techniques such as atlas-based and 2-
point Dixon methods. More recently, the same group has shown
that it is possible to take non-attenuation correction PET brain
images and using attenuation corrected images as the ground
truth, to directly predict one from the other, without the need
to calculate an attenuation map (82). This latter method could
enable the development of new PET scanners that do not require
either CT or MR imaging to be acquired, and which might be
cheaper to site and operate.

Random Noise
Medical fluoroscopy video is also sensitive to noise. Angiography
is one medical procedure using live video, and the video quality
is highly important. Speed is the main limitation of conventional
denoising algorithms such as BM3D. Praneeth Sadda et al. (83)
applied a deep neural network to remove Gaussian noise, speckle
noise, salt and pepper noise from fluoroscopy images. The final

output live video could meet and even exceed the efficacy of
BM3D with a 20-fold speedup.

SYNTHETIC IMAGE PRODUCTION

Each imaging modality (X-ray, CT, MRI, ultrasound) as well
as different MR sequences have different contrast and noise
mechanisms and hence captures different characteristics of the
underlying anatomy. The intensity transformation between any
two modalities/sequences is highly non-linear. For example,
Vemulapalli et al. (84) used a deep network to predict T1 images
from T2 images. With deep learning, medical image synthesis
can produce images of a desired modality without preforming an
actual scan, such as creating CT images from MRI data. This can
be of benefit because radiation can be avoided.

Ben-Cohen et al. (85) explored the use of full CNN and
conditional GAN to reconstruct PET images from CT images.
The deep learning system was tested for detection of malignant
tumors in the live region. The results suggested a true positive
ratio of 92.3% (24/26) and false positive ratio of 25% (2/8). This
is surprising because no metabolic activity is expected to be
present on CT images. It must be assumed that the CT features
somehow contain information about tumor metabolism. In a
reverse strategy, Choi and Lee (86) generated structural MR
images from amyloid PET images using generative adversarial
networks. Finally, Li et al. (87) used a 3D CNN architecture
to predict missing PET data from MRI, using the ADNI study,
and found it to be a better way of estimating missing data than
currently existing methods.

High-Field MRI
More recently, AI based methods, such as deep CNN’s, can take
a low-resolution image as the input and then output a high-
resolution image (88), with three operations, “patch extraction
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and representation,” “non-linear mapping,” and “reconstruction”
(89). Higher (or super-) resolution MRI can be implemented
using MRI scanners with higher magnetic field, such as advanced
7-T MRI scanners, which involves much higher instrumentation
and operational costs. As an alternative, many studies have
attempted to achieve super-resolution MRI images from low-
resolution MRI images. Bahrami et al. (90) trained a deep
learning architecture based CNN, inputting the appearance
and anatomical features of 3T MRI images and outputting as
the corresponding 7T MRI patch to reconstruct 7T-like MRI
images. Lyu et al. (91) adapted two neural networks based
on deep learning, conveying path-based convolutional encoder-
decoder with VGG (GAN-CPCE) and GAN constrained by the
identical, residual, and cycle learning ensemble (GAN-CIRCLE),
for super-resolution MRI from low-resolution MRI. Both neural
networks had a 2-fold resolution improvement. Chaudhari et al.
(92) implemented a 3-D CNN entitled DeepResolve to learn
residual-based transformations between high-resolution and
lower-resolution thick-slice images of musculoskeletal MRI. This
algorithm canmaintain the resolution as diagnostic image quality
with a 3-fold down-sampling. Similar methods have recently
been applied to T1-weighted brain imaging, which requires a
long acquisition time to obtain adequate resolution for cortical
thickness mapping (Figure 6).

Synthetic FLAIR
Synthetic MRI imaging has become more and more clinically
feasible, but synthetic FLAIR images are usually of lower quality
than conventional FLAIR images (93). Using conventional
FLAIR images as target, Hagiwara et al. (94) applied a conditional
GAN to generate improved FLAIR images from raw synthetic
MRI imaging data. This work created improved synthetic FLAIR
imaging with reduced swelling artifacts and granular artifacts in
the CSF, while preserving lesion contrast. More recently, Wang
et al. showed that improvements in image quality for all synthetic
MR sequences could be obtained using a single model for multi-
contrast synthesis along with a GAN discriminator, which was
dubbed “OneforAll” (95). This offered superior performance to a
standard U-net architecture trained on only one image contrast
at a time. Readers scored equivalent image quality between the
deep learning-based images and the conventional MR sequences
for all except proton-density images. The deep learning based T2
FLAIR images were superior to the conventional images, due to
the inherent noise suppression aspects of the training process.

IMAGE REGISTRATION

Deformable image registration is critical in clinical studies.
Image registration is necessary to establish accurate anatomical
correspondences. Intensity-based feature selection methods are
widely used in medical image registration, but do not guarantee
the exact correspondence of anatomic sites. Hand-engineered
features, such as Gabor filters and geometric moment invariants,
are also widely used, but do not work well for all types of
image data. Recently, many AI-based methods have been used
to perform image registration. Deep learning may be more
promising when compared to other learning-based methods,

because it does not require prior knowledge or hand-crafted
features. It uses a hierarchical deep architecture to infer complex
non-linear relationships quickly and efficiently (96).

Wu et al. (96) applied a convolutional stacked auto-encoder to
identify compact and highly discriminative features in observed
imaging data. They used a stacked two-layer CNN to directly
learn the hierarchical basis filters from a number of image patches
on the MR brain images. Then the coefficients can be applied
as the morphological signature for correspondence detection
to achieve promising registration results (97). Registration for
2D/3D image is one of the keys to enable image-guided
procedures, including advanced image-guided radiation therapy.
Slow computation and small capture range, which is defined as
the distance at which 10% of the registrations fail, are the two
major limitations of existing intensity-based 2D/3D registration
approaches. Miao et al. (98) proposed a CNN regression
approach, referred to as Pose Estimation via Hierarchical
Learning (PEHL), to achieve real-time 2D/3D registration with
large capture range and high accuracy. Their results showed
an increased capture range of 99–306% and a success rate
of 5–27.8%. The running time was ∼0.1 s, about one tenth
of the time consumption other intensity-based methods have.
This CNN regression approach achieved significantly higher
computational efficiency such that it is capable of real-time
2D/3D registration. Neylon et al. (99) presented a method
based on deep neural network for automated quantification of
deformable image registration. This neural network was able to
quantify deformable image registration error to within a single
voxel for 95% of the sub-volumes examined. Other studies also
include fast predictive image registration with deep encoder-
decoder network based on a Large Deformation Diffeomorphic
Metric Mapping model (100).

QUALITY ANALYSIS

Quality control is crucial for accurate medical imaging
measurement. However, it is a time-consuming process. Deep
learning-based automatic assessment may be more objective and
efficient. Lee et al. (101) applied a CNN to predict whether CT
scans meet the minimal image quality threshold for diagnosis.
Due to the relatively small number of cases, this deep learning
network had a fair performance with an accuracy of 0.76 and
an AUC of 0.78. Wu et al. (102) designed a computerized fetal
ultrasound quality assessment (FUIQA) scheme with two deep
CNNs (L-CNN and C-CNN). The L-CNN finds the region of
interest, while the C-CNN evaluates the image quality.

CHALLENGES OF DEEP LEARNING
APPLIED TO NEUROIMAGING
TECHNIQUES

In summary, deep learning is a machine learning method
based on artificial neural networks (ANN), and encompasses
supervised, unsupervised, and semi-supervised learning. Despite
the promises made by many studies, reliable application of deep
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FIGURE 6 | Use of convolutional neural networks to perform super-resolution. High-resolution T1-weighted imaging often requires long scan times to acquire

sufficient resolution to resolve the gray-white border and to estimate cortical thickness. Shorter scans may be obtained with lower resolution, and AI can be used to

restore the required high resolution (Image courtesy of Subtle Medical Inc.).

learning for neuroimaging still remains in its infancy and many
challenges remain.

First of them is overfitting. Training a complex classifier
with a small dataset always carries the risk of overfitting. Deep
learning models tend to fit the data exceptionally well, but it
doesn’t mean that they generalize well. There are many studies
that used different strategies to reduce overfitting, including
regularization (103), early stopping (104), and drop out (105).
While overfitting can be evaluated by performance of the
algorithm on a separate test data set, the algorithm may not
perform well on similar images acquired in different centers,
on different scanners, or with different patient demographics.
Larger data sets from different centers are typically acquired
in different ways using different scanners and protocols, with
subtly different image features, leading to poor performance
(21). According to those, data augmentation without standard
criteria cannot appropriately address issues encountered with
small datasets. Overcoming this problem, known as “brittle
AI,” is an important area of research if these methods are
to be used widely. Deep learning is also an intensely data
hungry technology. It requires a very large number of well
labeled examples to achieve accurate classification and validate
its performance for clinical implementation. Because upstream
applications such as image quality improvement are essentially
learning from many predictions in each image, this means that
the requirements for large datasets are not as severe as for
classification algorithms (where only one learning data point is
available per person). Nonetheless, building large, public, labeled
medical image datasets is important, while privacy concerns,
costs, assessment of ground truth, and the accuracy of the

labels remain stumbling blocks (18). One advantage of image
acquisition applications is that the data is in some sense already
labeled, with the fully sampled or high dose images playing the
role of labels in classification tasks. Besides the ethical and legal
challenges, the difficulty of physiologically or mechanistically
interpreting the results of deep learning are unsettling to some.
Deep networks are “black boxes” where data is input and an
output prediction, whether classification or image, is produced
(106). All deep learning algorithms operate in higher dimensions
than what can be directly visualized by the human mind, which
has been coined as “TheMythos of Model Interpretability” (107).
Some estimates of the network uncertainly in prediction would
be helpful to better interpret the images produced.

CONCLUSION

Although deep learning techniques in medical imaging are
still in their initial stages, they have been enthusiastically
applied to imaging techniques withmany inspired advancements.
Deep learning algorithms have revolutionized computer vision
research and driven advances in the analysis of radiologic images.
Upstream applications to image quality and value improvement
are just beginning to enter into the consciousness of radiologists,
and will have a big impact on making imaging faster, safer, and
more accessible for our patients.
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