Tiny Ferromagnetic Intraocular Foreign Bodies Detected by Magnetic Resonance Imaging: A Report of Two Cases

Yong Zhang, MD, Jingliang Cheng, MD, PhD,* Jie Bai, MD, Cuiping Ren, MD, Yan Zhang, MD, Xuemei Gao, MD, Xiaolin Cui, MD, and Yun Jun Yang, MD

We report two cases with tiny ferromagnetic intraocular foreign bodies (FBs) that were demonstrated only on magnetic resonance imaging (MRI) and confirmed by subsequent ophthalmologic operation. Both of the patients had a history of ocular trauma and their clinical symptoms were compatible with an intraocular FB. Plain x-ray film, 3 mm slice thickness computed tomography (CT) scans (Toshiba TXT 600 system and GERP22 system), B-scan ultrasonography, and an MRI study (Siemens Impact 1.0 MR system) were acquired. MR examinations were performed using spin-echo (SE) T1, T2, and PD-weighted axial and sagittal or coronal images with 3 mm slice thickness. Plain x-ray film, 3 mm slice thickness CT scans and B-scan ultrasonography all failed to demonstrate any tiny intraocular FBs in these two patients, whereas MRI revealed tiny ferromagnetic FBs due to their characteristic magnetic susceptibility artifact. A ferromagnetic FB was found in the vitreous body of each patient, which were 0.375 × 0.3 × 0.15 mm and 0.5 × 0.4 × 0.2 mm, respectively, and there was no evidence of MR-induced damage. We suggest that tiny ferromagnetic fragments with a diameter below 0.5 mm, which are too small to be visualized by x-ray plain films and CT images, may be visualized on MR images. These tiny ferromagnetic particles may not be large enough to cause ocular damage during a 1.0T MRI examination. MRI may be a useful tool in the evaluation of tiny intraocular ferromagnetic FBs if other imaging modalities such as plain x-ray film, CT scans, and ultrasonography failed to do so. Further evaluation with a large-scale study (in vitro and in vivo animal study) for the safety of detecting tiny (<0.5 mm) intraocular ferromagnetic particles is warranted.

Key Words: ocular trauma; ferromagnetic intraocular foreign bodies; magnetic resonance imaging

Case Two

A 25-year-old male patient complained that iron particles had splashed into his right eye when he lathed a steel rod 2 days previously. He had only suffered from lacrimation and local pain and was treated with antibiotic class eye drops then and there. Ophthalmologic examination disclosed that visual acuity in his right eye was hand motion at 5 inches and he had a line-like white abrasion on the corneal at the 3 o’clock position. He also presented with lens opacity and brown rust spots in the anterior lens capsule. Radiological examination showed that the results of plain x-ray and CT were negative, whereas B-scan ultrasonography examination indicated that a FB was located at the nose side of the right body. Coronal (Fig. 2A) and axial (Fig. 2B) CT images were performed with a GE RP22-type system with 3 mm slice thickness without interslice gap. The MR images were acquired with spin-echo sequences using phased-array surface coils on a Siemens Impact 1.0T MR system. MRI of the eye was performed with T1, T2-weighted, and PD-weighted axial and coronal pulse sequences (Fig. 2C–F) with 3-mm slice thickness and 0.1 mm interslice gap. MRI demonstrated slightly local image distortion and centric area of signal void and a circumjacent high-signal-intensity focus within the vitreous body. Eleven days later the ophthalmologist performed magnetic conducting rod extraction in combination with vitrectomy, during which no evidence of MR-induced damage was found, and a 0.5 × 0.4 × 0.2 mm ferromagnetic FB located in vitreous body at the 7 o’clock position was removed.

DISCUSSION

Substances with positive magnetic susceptibility are called paramagnetic, those with negative magnetic susceptibility are called diamagnetic, and those with strong positive magnetic susceptibility are called ferromagnetic (4). Ferromagnetism is frequently observed in transition elements, such as Fe, Co, and Ni; by the rare earths, Gd, Tb, Dy, Ho, Er, and Tm; and by a variety of alloys and compounds involving the transition, rare earth, and actinide elements (3,5). Iron particles are the most common intraocular ferromagnetic FBs (6,7). Not only may intraocular iron FBs have the potential for ocular toxicity, including retinal inflammation (8) and atrophy of the dependent retina from mechanical compression, but also could induce pathological changes of the retina by means of iron decomposition product (9). Both of our two cases had traumatic-cataract, vitreous body opacity, siderous bulbi within anterior capsule, and dramatically decreased visual acuity. Therefore, early diagnosis and operation were extremely important for these patients with a ferromagnetic intraocular FB. The clinical implication of our report is to yield a defi-
nite diagnosis and provide evidence for the ophthalmologist to perform magnetic extraction surgery.

Generally, plain x-ray and B-scan ultrasonography can detect large intraocular iron FBs, but do not have the capability of showing tiny intraocular iron FBs. Fortunately, those tiny intraocular iron FBs could be detected alternatively on CT images (10,11). Cao et al (12) reported that a 1-mm intraocular metal FB could be detected by CT, whereas Gaster and Duda (13) reported that CT could not accurately detect a 0.5-mm metal intraocular FB. Another report (14) reported that CT could detect a 0.4 × 0.25 mm iron FB, and even a 0.2 × 0.1 × 0.1 mm one. In our report the intraocular iron FBs (0.375 × 0.3 × 0.15 mm and 0.5 × 0.4 × 0.2 mm, respectively) were not detected by 3-mm slice thickness CT images. We hypothesized that the negative result of our CT examination may be predominantly due to the tiny size of our ferromagnetic FBs (0.016 and 0.04 mm³ respectively), since Otto et al (20) had stated that the threshold size of particle detection for CT and plain x-ray, respectively, since Otto et al (20) had stated that the threshold size of particle detection for CT and plain x-ray was 0.07 mm³ and 0.12 mm³, respectively, since Otto et al (20) had stated that the threshold size of particle detection for CT and plain x-ray was 0.07 mm³ and 0.12 mm³, respectively. Other possible reasons may be related to the partial-volume effect of a CT scan, and the movement of the patient’s eyeball when scanning. In our cases, MSAs appeared as zones of signal void bordered by crescentic regions of high signal intensity and geometric distortions. These typical appearances of the MSA could easily lead to the diagnosis of FB. On the other hand, because the sizes of the MSAs were very small, we could easily draw the conclusion that these FBs were located within the vitreous body.

Recently, although volume-CT techniques with higher space resolution have developed dramatically, the disadvantages of radiation exposure should be considered while performing ophthalmic CT examination. Some authors (15,16) tried to find a balance between minimizing radiation exposure and detecting tiny intraocular FBs, and compared the examination time, motion artifacts, radiation exposure, and diagnostic abilities between spiral CT and conventional CT (17,18). Nowadays, the routine CT scanning standards for ophthalmic trauma is 3-mm slice thickness; therefore tiny (<3 mm) metallic intraocular FBs may be missed on CT images because of the partial volume effects. We hypothesized that the ability of MRI to detect tiny intraocular ferromagnetic FBs should be superior to plain x-ray, CT, and B-scan ultrasonography due to the characteristic MSAs caused by the intraocular tiny ferromagnetic intraocular FBs, which was proven in these two cases. We suggest that ocular trauma patients with suspected ferromagnetic intraocular FBs (for example, deposition of multiple rust spots in different tissues of eyeballs) should undergo MRI examination when the results of plain x-ray, CT, and B-scan ultrasonography are negative. MRI study can detect tiny ferromagnetic FBs, thus providing evidence for performing magnetic extraction surgery.

Several authors (1–3,20) reported that MRI can cause serious ocular damage or visual alteration attributable to movement of the FBs in patients with ferromagnetic intraocular FBs during MRI scanning. Therefore, MRI is contraindicated if ferromagnetic FBs can be demonstrated by skull x-ray or CT. However, in the Williams et al report (19), only one of the largest (3 × 1 × 1 mm sized) ferromagnetic FBs moved under the MRI system. Seidenwurm et al (21) revealed that 5% of the MRI facilities had no orbital screening protocol, and there has almost certainly been MR exposure in thousands of patients harboring metallic FBs in which no injuries resulted. The upper bound of the 95% confidence limits for the rate of injury to the eye due to ferromagnetic FBs is less than 0.003%. In our two reported cases the ferromagnetic intraocular FBs did not move in the Siemens Impact 1.0T MR system and no ocular damage was caused during the examination. Hence, we suggest that tiny ferromagnetic fragments that are too small to be visualized by x-ray plain films and 3-mm slice CT images may not be large enough to cause ocular damage during 1.0T MRI examination. Further evaluation with a large-scale study (in vitro and in vivo animal study) to evaluate the movement and MR safety of tiny (<0.5 mm and/or different sized) intraocular ferromagnetic particles at various field strengths (such as 1.5 and 3.0T MR) is warranted.

REFERENCES