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Computer-aided tools have improved diagnoses since 
the 1950s (1,2). Due to algorithmic innovations, in-

creasing computational resources, and high medical data 
availability, modern machine learning (ML) algorithms 
can analyze large datasets across various modalities and 
assist with clinical decision-making (3). However, recent 
studies suggest that ML algorithms may be biased (4–7). 
In this report, we consider bias as a difference in ML per-
formance against or in favor of a population subgroup. 
Bias can occur in different aspects of an ML study, includ-
ing data handling, model development, and performance 
evaluation of models. While algorithms have shown ex-
cellent performance in recent health care research (8,9), 
models must be interpretable, valid, and reliable to be 
applied in clinical practice (10–14).

This report is the last in the Mitigating Bias in Radiology 
Machine Learning series (15,16) and focuses on potential 
bias during the performance evaluation of ML models. We 
first define the meaning of an appropriate fitness in ML, 
followed by a discussion of internal versus external test-
ing of ML models. We then thoroughly discuss the three 
main toolboxes required for proper evaluation of model 
performance: (a) performance evaluation metrics, (b) per-
formance interpretation maps, and (c) uncertainty quanti-
fication (UQ) techniques (Fig 1). Finally, we describe the 
appropriate application of techniques in each toolbox to 
avoid or minimize biases in ML model evaluation. Our 
primary goal is to address ML biases in radiology, but most 
of our discussion can be applied to other areas of ML in 
health care.

Determining “Fitness” in ML
After training an ML model, one must determine if 
the model fits properly to the data and if its fitness is 

affected by any biases. Model fitness can primarily be 
determined by observing the loss curves obtained dur-
ing training, which is often the first step in evaluating a 
model’s performance.

Model Underfitting
Training and validation loss curves may help identify 
two patterns that imply underfitting. The first pattern 
is characterized by a maintained downward slope of the 
validation loss curve during the entire training process, 
which implies that the model has not been trained fully 
and can be improved. Generally, model training should 
continue until the loss curve goes up for a sustained in-
terval. The second pattern occurs when the training loss 
curve reaches a plateau instead of maintaining a down-
ward slope, implying that the chosen model architecture 
may lack the required capacity (ie, has too few param-
eters) to sufficiently learn the problem at hand. Another, 
more frequent cause of underfitting is the presence of un-
optimized hyperparameters, such as learning rate or the 
loss term, necessitating rigorous hyperparameter optimi-
zation and consideration of a more sophisticated model 
architecture. However, one may observe the same pattern 
of training loss if there is insufficient signal in the data to 
be learned by the model.

Model Overfitting
Detection of model overfitting can be more difficult. 
Traditionally, overfitting is defined as the point where 
the model’s validation loss begins to increase while the 
training loss continues to decline. However, this is a na-
ive approach for detecting overfitting, and relying on it 
can lead to inappropriate model selection. For example, 
diverging loss curves often happen transiently through-
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where each shows superior performance in a set of metrics that 
are optimal for specific clinical scenarios. For example, in the 
case of creating a screening tool for a rare condition, a model 
with high sensitivity and negative predictive value is preferred 
over a model with high specificity. The performance evaluation 
metrics should be selected by clinical domain experts for a par-
ticular task.

Internal versus External Model Testing
Model testing can generally be categorized as “internal” or “ex-
ternal.” Internal testing uses the data from the same source as 
the training set that was held out during training, making the 
test data independent and identically distributed to the train-
ing data. There are different techniques to internally test an ML 
model, for example, simple train-validation-test split, cross-
validation, and nested cross-validation (15). Although these 
techniques can help determine model fitness, internal testing 
may not detect biases present in the original data (19,20).

In contrast, external testing involves evaluating trained mod-
els on unseen external datasets with different populations (eg, 
race, age, sex, symptoms), enabling the detection and quantifica-
tion of biases that may not be apparent using internal testing. 
Moreover, external testing helps to identify a recently described 
phenomenon called underspecification, which is the inability of a 
pipeline to identify whether a model has embedded the structure 
of the underlying system and will remain invariable in response 
to confounding factors (21). Larrazabal et al (22) showed that 
the performance of classifier models trained on the National In-
stitutes of Health ChestX-Ray14 dataset differs significantly if 
applied to chest radiograph data from other sources. The under-
lying source of bias for these differences in model performance 
on external datasets was the sex distribution in the training data-
set. As another example, a COVID-19 detection model trained 
on adults may be biased to adult presentations and less accurate 
in children (23). When these biases are detected, models can be 
retrained accordingly.

To properly perform external testing and avoid adding bias, 
researchers should first collect their external data from centers 
that are as similar as possible to the sites where their final model 
will be deployed. Second, datasets should include diverse popu-
lations (ie, age, sex, height, weight, body mass index, symptoms, 
etc) and conditions (ie, vendors, models, hardware, imaging 
protocols, etc) to assess the overall generalizability of the model. 
Finally, the preprocessing steps of external data should be identi-
cal to those of training data to ensure the external testing results 
remain fair and reliable. External testing based on an inappropri-
ate dataset may underestimate model performance. For success-
ful clinical use of a model, external testing must be incrementally 
performed and explained so clinicians comprehend the proper 
use cases and limitations of these models. The external testing 
process can be facilitated by open sourcing code, model weights, 
and, whenever possible, de-identified data to help reduce bias 
and make models more deployable.

In summary, external testing helps researchers understand 
how their models perform in real-world situations. Note that 
all tools reviewed in this report can be applied to internal and 
external test sets, as model performance should be compared 

out the training process, such as when the learning rate is high 
(17). Another situation is training on highly imbalanced data-
sets. For instance, a model trained to detect a disease that has 
1% prevalence may learn to always predict that the patient is 
healthy, resulting in a low validation loss value (if the loss is 
not weighted). As the model learns representative features, it 
might misclassify some healthy patients as those with disease, 
thus increasing validation loss values. However, this increased 
loss cannot be attributed to overfitting; instead, it implies that 
the model has started to learn a relevant set of features for clas-
sification, which are still imperfect. Therefore, loss curves can-
not solely ensure correct training. Other tools, such as perfor-
mance metrics, are needed to evaluate model performance. For 
example, increasing validation loss and F1 score would likely 
indicate that the model is learning through imperfect features 
that overlap between patients with and without disease.

Loss curves and metrics alone cannot guarantee a proper fit. 
There are instances when the metrics improve and the valida-
tion loss decreases, but the model fits on irrelevant information 
existing in the image. This occurs when the model selects fea-
tures correlated with the desired outcome but not relevant to 
the desired application. For example, in a study for detecting 
femoral neck fractures from hip radiographs, a model could 
predict the outcome by learning the location where imaging 
took place (eg, the emergency department), the timing of im-
aging (eg, at night), and several other irrelevant features (18). 
This example emphasizes the need for inspecting the interpre-
tation map of the model to determine if it is “focusing” on 
meaningful parts of the image.

Model fit can be determined by examining loss curves, met-
rics, and model interpretation maps. Different models with ap-
propriate fitness levels can be trained on the same training data, 

Abbreviations
AHD = average HD, AP = average precision, DGM = deep genera-
tive model, DSC = Dice similarity coefficient, FP = false positive, 
HD = Hausdorff distance, IoU = intersection over union, mAP = 
mean AP, ML = machine learning, MSE = mean square error, PR = 
precision recall, PSNR = peak signal-to-noise ratio, ROC = receiver 
operating characteristic, SSIM = structural similarity index mea-
sure, TP = true positive, UQ = uncertainty quantification

Summary
This report discusses the proper use of three performance evaluation 
toolboxes—performance metrics, performance interpretation maps, 
and uncertainty quantification—to help detect bias in machine 
learning.

Key Points
 n Bias in machine learning (ML) model performance, either against 

or in favor of a particular data sample, limits their applicability in 
real-world clinical practice.

 n Inappropriate evaluation of model performance can lead to biased 
results.

 n Proper use of performance evaluation toolboxes, including perfor-
mance metrics, performance interpretation maps, and uncertainty 
quantification, can help identify potential biases in ML models.
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Which performance metrics to use to evaluate model per-
formance depends highly on the clinical context of the problem 
(26,27). For example, if a model aims to screen breast cancer on 
mammograms, it is important to detect any suspicious lesions. 
Thus, a model with high sensitivity is preferred over a highly 
specific model. However, if we want to develop a model for 
confirming breast cancer, a more specific model would be more 
optimal. Moreover, there is often no specific threshold for per-
formance metrics to determine if a model is performing well or 
not. For instance, identifying bacterial pneumonia using a chest 
radiograph with 80% sensitivity and 85% specificity may not 
appear impressive to thoracic radiologists, but the same metric 
values for identifying true progression versus pseudoprogression 
at MRI in patients with glioblastoma would be very valuable 
(28). To set a meaningful threshold for their metrics, developers 
need to review the previous literature and consult with clinicians 
to better understand what level of performance is required in 
clinical practice.

Accuracy.— Another consideration before selecting a set of 
performance metrics is how the strengths and limitations of 
each metric may impact the evaluation results (27). For in-
stance, relying on the “accuracy” metric to evaluate model 
performance could lead to bias in the presence of severe data 
imbalance. Consider a model trained to detect glioblastoma 
in brain MRI studies that always predicts no brain tumor in 
each image. Such a model will have very high accuracy, as the 
incidence of glioblastoma is only 3.19 cases per 100 000 per 
year in the United States. Further, accuracy would be higher 
within an emergency department or oncology clinic. Instead 
of accuracy, a metric such as F1 score, receiver operating char-
acteristic (ROC) curve, or precision-recall (PR) curve may bet-
ter demonstrate model performance on imbalanced data (29). 
Nevertheless, accuracy remains a common metric because it is 
a single value and can be understood intuitively.

on both types of test sets to fully understand the model and its 
underlying biases. Despite all its advantages, external testing is 
not always feasible due to difficulties in gaining access to proper 
external data. To address these issues, authors have recently sug-
gested “stress testing” trained models as an alternative to external 
testing. This approach consists of obtaining a controlled shifted 
dataset from the original (internal) population and testing the 
trained model on this shifted dataset to identify its underspecifi-
cations (21,24).

Toolbox 1: Performance Evaluation Metrics
This section discusses commonly used performance metrics for 
various ML tasks, including their strengths and limitations and 
appropriate use to mitigate bias in performance evaluation.

Classification Tasks
Generally, classification tasks fall into three categories: binary 
(eg, to predict the presence or absence of pneumonia), multi-
class (eg, distinguishing bacterial pneumonia, viral pneumonia, 
and no pneumonia), or multilabel (eg, looking for the pres-
ence or absence of pneumonia and the presence or absence of 
pneumothorax). We focus on binary classification metrics as 
they are easy to understand and can be extended to other clas-
sification types.

Confusion matrix.— Results of a binary classifier may be sum-
marized in a confusion matrix (25) (Fig 2). Because each value 
represents one aspect of performance, looking at only one of 
them may lead to bias. For example, while seemingly optimal, 
a model with no false-negative findings may not be ideal if it 
produces many false-positive (FP) findings. To avoid bias in 
performance evaluation, one typically calculates metrics on 
the basis of combinations of confusion matrix values. Table 1 
summarizes the definitions, formulas, and synonyms of these 
metrics (25).

Figure 1: A framework of different toolboxes in evaluation of deep learning model performance.
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that can detect the presence or absence on radiologic images of 
a particular tumor with a prevalence of 0.0001. Further, assume 
model A classifies 100 patients as tumor positive with 90 TPs 
in a collection of 1 000 000 images, while B classifies 2000 im-
ages as tumor positive with 90 TPs in the same collection. The 
TP rate and FP rate for models A versus B would be 0.9 and 
0.00001 versus 0.9 and 0.00191, respectively. As presented here, 
the difference between FP rates is small (0.0019), but the preci-
sion and recall for models A versus B would be 0.9 and 0.9, ver-
sus 0.9 and 0.45, respectively; therefore, when there is a massive 
class imbalance, the area under the PR curve is more appropriate 
than the area under the ROC curve, as it more accurately sum-
marizes a classifier’s performance (31) (Fig 3B).

ROC and PR curves.— The ROC curve is a performance evalu-
ation tool for balanced and imbalanced datasets that plots the 
true-positive (TP) rate (sensitivity) versus the FP rate (1 − spec-
ificity) at various threshold levels (30). In general, ROC curves 
that are closest to the left and top represent a better classifier, 
while a random guessing model would have a diagonal line 
from the bottom left of the plot to the top right, with an area 
under the ROC curve of 0.5 (Fig 3A).

PR curves, an alternative to ROC curves, plot precision 
against recall at various thresholds. While there are some similar-
ities between PR and ROC curves (30), the optimum threshold 
for each may differ, with the main difference being the impor-
tance of the true-negative rate. Imagine two models, A and B, 

Figure 2: A confusion matrix and the associated calculations.

Table 1: Summary of Different Classification, Object Detection, and Segmentation Performance Metrics

Metric Definition Synonyms Mathematical Formula

Sensitivity The fraction of positive cases predicted as 
positive

Recall, true-positive rate Sensitivity = TP/(TP 1 FN)

Specificity The fraction of negative cases predicted 
as negative

Selectivity, true-negative 
rate

Specificity = TN/(TN 1 FP)

False-positive rate (FPR) The fraction of cases predicted positive 
that were actually negative

Fall-out, probability of 
false alarm

FPR = FP/(TN 1 FP)

False-negative rate 
(FNR)

The fraction of cases predicted negative 
that were actually positive

Miss rate FNR = FN/(TP 1 FN)

Positive predictive value 
(PPV)

The fraction of truly positive cases from 
all cases the model predicted positive

Precision PPV = TP/(TP 1 FP)

Negative predictive value 
(NPV)

The fraction of truly negative cases from 
all cases the model predicted negative

… NPV = TN/(TN 1 FN)

Accuracy The fraction of cases the model correctly 
predicted

… Accuracy = (TP1 TN)/(TP1 TN 1 FN 
1 FP)

F1 score The harmonic mean of positive predictive 
value and sensitivity

F score, F measure, Dice 
similarity coefficient

F1 = 2TP/(2TP 1 FP 1 FN)

Note.—FN = false negative, FP = false positive, TN = true negative, TP = true positive. Reprinted from reference 25.
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instances are considered standard evaluation metrics. Many 
metrics are available to evaluate the performance of segmenta-
tion models, including accuracy, intersection over union (IoU), 
Dice similarity coefficient (DSC), and the Hausdorff distance 
(HD) (Fig 4). As different metrics can be sensitive to issues 
such as the presence of outliers (false-negative findings) or class 
imbalance, choosing the correct metric is critical to a fair evalu-
ation of the model performance (33).

Accuracy.— Although applicable, accuracy is rarely used to as-
sess segmentation performance. Similar to classification tasks, 
accuracy tends to overestimate the performance of ML models 
in the presence of severe class imbalance, which is often the 
case, because the object is often small compared with back-
ground. For example, when an object of interest occupies 10% 

Segmentation
A segmentation model divides an image into different regions 
on the basis of the characteristics of pixels (voxels) to iden-
tify objects of interest (32). Segmentation models produce 
masks as outputs, in which nonzero pixel values correspond 
to the objects of interest in the original image, and pixels with 
zero values typically denote everything else (background). 
Segmentation models fall into two categories: semantic seg-
mentation and instance segmentation, where the former as-
signs the same pixel value to multiple instances of the same 
object (eg, different lung nodules on a chest radiograph), and 
the latter labels them differently. While performance metrics 
are calculated based on the overall performance of a seman-
tic segmentation model, instance-level metrics (ie, each struc-
ture being segmented) and the average of each across different 

Figure 3: Illustration of (A) receiver operating characteristic curve and (B) precision-recall curve.

Figure 4: Schematic illustration of segmentation performance metrics. Schematic definitions of (A) intersection over union (IoU), (B) Dice similar-
ity coefficient (DSC), and (C) Hausdorff distance (HD).
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of the area in an image and the remaining pixels belong to the 
background, a model can achieve 90% accuracy on the seg-
mentation task by predicting every pixel as background.

IoU.— The IoU measures the overlap between the predicted 
object contour and the ground truth contour (34) (Fig 4A). 
The IoU value ranges from 0 to 1, where 0 signifies no overlap, 
and 1 denotes complete overlap.

DSC.— DSC is a metric similar to IoU and is often used for 
semantic segmentation tasks, but it could also be used for ob-
ject detection (35) (Fig 4B) (Table 2). Although DSC increases 
monotonically with respect to IoU, IoU penalizes incorrect 
classifications more severely than DSC. For example, suppose 
that most predictions from an object detection model, A, are 
moderately more accurate than those of another model, B, but 
some are substantially worse. DSC may favor model A in such 
a scenario, while IoU may be higher for model B (36).

HD.— Metrics like IoU or DSC are more often used to evaluate 
segmentation models, because they ignore the background and 
focus on the objects. However, these metrics do not consider 
the spatial distance between the model’s predictions and the 
ground truth labels, an issue that can be mitigated using the 
HD.

Calculating the spatial distance between the edges of two ob-
jects is widely used in image segmentation to measure similarity. 
Considering the position of voxels, one may measure the dis-
tance between two contours. The HD between two finite point 
sets, A = {a1,….,an} and B = {b1,….,bn}, is defined by HD (A, B) 
= max[h(A, B), h(B, A)], where h(A, B) and h(B, A) are called 
the directed HD and are calculated as shown in Equation (1) 
(Fig 4C),

( , ) max (min ( , ) ) and ( , ) max (min ( , ) )
a A b B b B a A

h A B d a b   h B A d b a
∈ ∈ ∈ ∈

= =
 
(1).

Here, ∣d(a, b)∣ is the absolute value of Euclidean distance. To 
elaborate further, imagine the ground truth segmentation for an 
object of interest in an example image is A, and the predicted 
mask for that object is B. There is a distance s that expands A 
such that A will completely cover B. Also, there is a distance 
g that expands B such that it completely covers A. The maxi-
mum of the smallest possible s for A and the smallest possible 
g for B is defined as the HD. One challenge in using HD is its 
sensitivity to outliers (FPs), which could make HD meaningless 
(33,37,38). To mitigate this, researchers often use the 95th per-
centile of the average distance between two sets of points (some-
times known as HD95).

The average HD (AHD) is defined as: AHD (A, B) = max 
[davg(A, B), davg(B, A)], where davg(A, B) and davg(B, A) are the 
AHD, and the distance between each point is calculated by the 
Euclidean distance (Eq 2).

avg
1( , ) min ( , )

a A b B
d A B  d a b

N ∈ ∈
= ∑  (2).

In general, the AHD value ranges from 0 to higher positive 
numbers (depending on the units of the distance metric), with 
low AHD values considered optimal. Overall, similarity metrics 
(eg, DSC or IoU) or distance metrics (eg, Hausdorff or Mahala-
nobis) are useful metrics for evaluating segmentation models but 
may not be ideal for some tasks (39) and may require the use of 
multiple metrics simultaneously to interpret model performance.

Object Detection Tasks
An object detection model draws a rectangle (bounding box) 
around the object of interest and often begins by performing a 
regression task followed by a classification task. The regression 
task predicts bounding boxes to describe the spatial location of 
different objects of interest in an image, as opposed to segmen-
tation, where the contour of the object of interest is precisely 
delineated. Each bounding box surrounds an object, specifies 

Table 2: Object Detection and Segmentation Metrics

Metric Definition Mathematical Formula

Intersection over union (IoU) Area of overlap between the predicted and the 
ground truth bounding boxes divided by the 
area of their union

Area ( ) TPIoU( , )
Area ( ) TP FP FN

A B
A B

A B
= =

+ +
∩
∪

Mean average precision (mAP) mAP of the classes

0

1mAP AP  for   number of classes
n

i
IoU

i

n
n =

= ∑

Dice similarity coefficient (DSC) Twice the overlapped area between the ground 
truth and predicted bounding boxes divided 
by the sum of their area

DSC( , )
2 Area( , ) 2TP 2 IoU

Area( ) Area( ) 2TP FP FN 1 IoU

A B
A B

A B

=
× ×

= =
+ + + +

Hausdorff distance (HD) Calculating the spatial distance between the 
edges of two objects

h(A,B) = maxaAminbBd(b, a)
h(B, A) = maxbBminaAd (b, a)
HD (A, B) = max(h(A,B), h(B, A))

Note.—FN = false negative, FP = false positive, TP = true positive.
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its location, and provides a box confidence score to show how 
likely it is that the box includes an object of interest (regardless 
of the class for that object). The classification task, on the other 
hand, uses these predicted bounding box regions to predict the 
object classes within them. The most common metrics used for 
object detection performance evaluation are IoU, mean average 
precision (mAP), and DSC.

To define mAP, we first need to define average precision (AP) 
and how it is affected by the IoU threshold. By setting an IoU 
threshold, one can label detections as correct or incorrect. With 
the presence of an object in a bounding box, any IoU value 
greater than or equal to the threshold value is considered as TP 
detection. Therefore, the confusion matrix for the classification 
performance of an object detection model depends on the IoU 
threshold set for that model. AP equals the area under the PR 
curve for a model detecting a specific class at various thresholds 
(Eq 3), with lower IoU thresholds resulting in higher AP scores. 
Averaging all the AP scores across all classes results in the mAP 
value (Eq 4). The higher the mAP score, the more accurate the 
model (40,41):

 (3)

and

i
IoU0

1mAP AP ,for  number of  classesn

i
n

n =
= ∑  (4).

AP values may vary from very high for those classes with 
sufficient training data to very low for classes with fewer data. 
Therefore, the calculated mAP for a model does not reflect the 
model’s performance for all classes. The mAP may be moderate if 
the model performs well for certain classes and poorly for others. 
In contrast, a high mAP value almost always indicates a consis-
tently good performance across all classes and confidence levels.

Generative Models
Deep generative models (DGMs) are trained neural networks 
usually used to generate or improve images. While develop-
ing DGMs in computer vision has attracted increasing interest 
with applications such as superresolution, denoising, artifact 
reduction, and reconstruction, such applications are also im-
portant in clinical artificial intelligence tasks (42–45). DGMs 
generally transform acquired signals into images that are mean-
ingful to humans and can be formulated as a multidimensional 
linear system,

x y δ= +ε  (5),

in which x is the desired image based on the input image y. Ɛ 
is the encoder operator representing various generative tasks, 
for example, an identity operator for image denoising, image-
space uniform undersampling for superresolution, local mask-
ing operators for in-painting, and k-space undersamples for 
MRI reconstruction. s usually represents coherent noise by the 
measurement. In superresolution, for example, where x is the 
high-resolution image and y the corresponding low-resolution 

image, Ɛ represents an undersampling operation that turns x 
into y. The superresolution task tries to solve the inverse prob-
lem of Equation (5) to generate the original image x from y. 
However, the problem is indeterminate, as the solution x cor-
responding to y is not unique.

As a result, the generative task described by Equation (5) is ill-
posed (46) and often reformulated as an optimization problem:

2

2

1ˆ arg min( )
2

x x y= −ε  (6).

The resulting operation can therefore be solved by supervised 
learning.

Pixelwise metrics.— DGMs can generate high-quality images 
with properties needed for specific tasks. Thus, evaluating the 
generated image quality is critical for DGM applications in 
medical imaging.

Among the traditional metrics to evaluate the quality of gener-
ated images, mean-square error (MSE) is the most basic. It mea-
sures the average squared difference between pixels in two images:

2
1

1MSE (   ) n
k kk

x y
n =

= −∑  (7).

Here, x and y are two images, and n is the number of pixels. 
The square root of MSE is also popular. Two other traditional met-
rics are peak signal-to-noise ratio (PSNR) and the structural simi-
larity index measure (SSIM). PSNR is often used to measure the 
quality of digital signal transmission and is calculated as follows:

2

10
(max )PSNR 1 0 log ( )

MSE
d

=  (8),

where max d is the maximum possible dynamic range of the 
image (usually 255 if an 8-bit image). On the other hand, 
SSIM is a perceptual quality metric and may better reflect what 
is seen than MSE and PSNR. The two-dimensional SSIM is 
formulated as:

 (9),

where x and y are the averages of x and y pixel values, s2
x and s2

y 
are the variances of x and y, sxy is the covariance of x and y, and 
c1 and c2 are additional parameters. While MSE and PSNR are 
metrics in a pixelwise style, SSIM emphasizes the correlations 
between spatially nearby pixels, which may infer information 
regarding the higher-level image features.

It should be noted that all these metrics can be used as loss 
functions for training the DGM. In practice, PSNR and SSIM 
should be multiplied by -1 when doing so, as higher values indi-
cate higher image quality.

Perceptual metrics.— One pitfall of using pixelwise metrics 
as a loss function is that although the trained model can 
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achieve better validation metrics, it can also generate images 
that are too smooth, which may appear blurry compared 
with the ground truth high-resolution images. In practice, 
perceptual loss and generative adversarial networks loss are 
used to better capture the textural details and edges; thus, 
perceptual quality metrics such as perceptual index and 
natural image quality evaluator are also proposed in the lit-
erature for evaluating generative models (47,48). Therefore, 
researchers often use a combination of pixelwise and per-
ceptual quality metrics to evaluate generative model perfor-
mance. Almost all these image quality measures rely on the 
ground truth image, and whether they should be used alone 
or in combination with other metrics depends on the gen-
erative task at hand.

Compared with physics-informed deep learning models (eg, 
compressed sensing), generative adversarial networks may cre-
ate fake findings in an image because of instability in training 
and pseudorealistic output. Thus, blind evaluation by radiolo-
gists is highly recommended when evaluating the textural and 
diagnostic qualities of clinical images generated by ML models 
compared with real medical imaging.

Toolbox 2: Performance Interpretation Maps
We described several metrics that are frequently used to evaluate 
the performance of ML models. However, relying on such met-
rics alone cannot guarantee that a model is free of bias, even in 
the presence of acceptable metric values, as models may have ac-
cidentally fit to meaningless noise in the input data. Deep evalu-

ation of an ML model performance, therefore, also depends on 
interpreting the decision-making process of ML models.

Performance interpretation maps show where a trained neu-
ral network “looks” at an image in a computer vision task. It 
allows one to identify what the model considers discriminative 
parts of an image. Thus, an interpretation map may help diag-
nose failure modes and detect bias in computer vision tasks. Post 
hoc interpretation maps, in general, create heatmaps to describe 
how different parts of an image influence the model’s decision 
on a pixel-by-pixel basis (49,50). In a well-trained model, class-
specific features outweigh other features. In contrast, a biased 
model detects incorrect features rather than the meaningful sig-
nal in the images. With all these considerations in mind, a good 
interpretation map helps answer the following questions: How 
does the model use the input data to fulfill its purpose? Where 
are the features most responsible for the output? Does the model 
capture relevant relationships within the data (51)?

Currently available post hoc interpretation maps generally 
fall into three categories: perturbation-based approaches, back-
propagation-based or gradient-based approaches, and decom-
position-based approaches. As an alternative to post hoc attri-
bution, trainable attention modules can be attached to typical 
convolutional neural network architectures to produce so-called 
attention maps during model training (50). Table 3 summarizes 
available methods and provides examples.

Despite these potential benefits of interpretation maps (Fig 
5), they do have important limitations. Most notably, there 
is concern that explanations derived from attribution-based 

Table 3: Summary of Different Performance Interpretation Maps

Map Type Examples

Perturbation based Looks at changes in output based on small changes (perturbations) in input
Generative visual rationale (GVR): Uses a generative model to reconstruct the input image with 

and without certain features, like a disease state or other label of interest; GVR tries to answer the 
question, “How might this person’s image change, to appear without the disease?”

Shapley additive explanation (ie, SHAP) values: Uses optimal Shapley values to determine the mar-
ginal contributions of features

Local interpretable model-agnostic explanations (LIME): LIME considers a collection of random in-
puts that are similar to a given input; it arranges the inputs and draws boundaries between inputs 
with different outputs

Gradient based Looks at model gradients calculated at a particular input to determine the sensitivity of the model 
to changes in input and attempts to assign an “importance” value to each pixel that highlights 
its influence on the model’s final classification; visualizations of pixel importance are often called 
saliency maps

SmoothGrad: Creates many images by adding random noise to an input, then averages the model’s 
outputs on each modified input to generate smoother class score functions

Integrated gradients: Adds up all gradients from a baseline (eg, blank) image to a given input image
Guided backpropagation: Directly uses the backpropagation derivatives embedded within the neural 

network to visualize important pixels in an input image
Gradient-weighted class activation mapping (ie, Grad-CAM): Looks at gradients in the final con-

volutional layer of a convolutional neural network to find regions of importance within an input 
image

Decomposition based Decomposes a model into functional components
Functional decomposition: Separates a high-dimensional model into individual feature effects and 

interaction effects
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interpretation methods, such as saliency mapping or class activa-
tion maps, are unreliable and misleading (52,53). For instance, 
Seah et al (54) reported that heatmaps on frontal chest radio-
graphs did not represent the expected abnormality of heart fail-
ure after using several attribution-based interpretation methods 
(occlusions, integrated gradients, and local interpretable model-
agnostic explanations). However, the expected abnormalities 
(cardiomegaly and low body mass) could be visualized using 
generative visual rationale. Additionally, Böhle et al (55) found 
that guided backpropagation did not produce interpretation 
maps that were visually distinguishable in Alzheimer disease ver-
sus healthy controls using T1-weighted brain MRI studies. In a 
recent study, Arun et al (56) assessed interpretation maps using 
four critical trustworthiness criteria: utility, sensitivity to weight 
randomization, repeatability (intra-architecture), and reproduc-
ibility (interarchitecture). The authors concluded that saliency 
maps should be scrutinized more closely in the high-risk domain 
of diagnostic medical imaging and recommended using detec-
tion or segmentation models instead of saliency maps if localiza-
tion is desired. In summary, interpretation maps can be used to 
identify biases, but researchers should consider their limitations.

Toolbox 3: UQ Techniques
UQ techniques measure the confidence of a model, depicting 
the trustworthiness of its predictions. Moreover, UQ can dem-
onstrate the biases resulting in overconfidence or underconfi-
dence in model predictions. UQ identifies when medical ML 
models have insufficient information to make a reliable deci-
sion, thus informing users that an output has low trust. In this 
way, the model communicates with medical experts and likely 
increases trust in model performance over time (57,58).

Uncertainty can be divided into two categories: aleatoric and 
epistemic. Aleatoric uncertainty (data uncertainty) is noise in the 
data and thus is irreducible regardless of how we train the model. 
In contrast, epistemic uncertainty (knowledge uncertainty) is 
the less-than-perfect model performance that can be lessened by 

gathering enough training data and improving the model over 
time. Usually, model uncertainty refers to epistemic uncertainty, 
which is focused on here (59,60).

Performing UQ can be a challenging task for developers and 
may lead to bias if done improperly. When performing UQ, de-
velopers should pay attention to the calibrated confidence of a 
model in addition to its predictions. The calibrated confidence of 
a model indicates how close the predicted model output values 
are to the real probability of those outcomes. For example, sup-
pose a chest radiograph classifier that ends with a softmax func-
tion predicts values of 0.1, 0.2, and 0.7 for three output classes of 
normal, viral pneumonia, or bacterial pneumonia, respectively. 
This model’s confidence could be considered calibrated if the 
real-world probability of the patient having viral pneumonia is 
close to 0.2. However, previous research has shown that models 
ending with softmax layers are prone to low calibration; there-
fore, softmax output is not an acceptable approach for assessing 
the trustworthiness of a model, especially in the medical field 
(61–63).

Although there are many UQ techniques in ML research, 
the more popular techniques may be classified into three groups 
(64,65):

1. Bayesian methods approximate the posterior distributions 
of model weights (parameters) and capture how much these 
weights vary over the data, either during training or inference. 
A famous Bayesian method is Monte Carlo dropout, in which 
different instances of a single model are formed by randomly 
changing the level of contribution of different nodes in each 
instance during inference (similar to dropout regularization). 
Comparing the performance of each model instance with a dif-
ferent configuration yields a distribution of the model’s predic-
tions, which helps estimate the model’s level of uncertainty (61).

2. Ensemble methods require training many instances of 
the same model on the same training data but with different 
random seeds. All predictions made by each model instance are 
ensembled to form a final prediction (typically the average of all 

Figure 5: Example gradient-weighted class activation mapping images for two COVID-19 detection models. Both models 
have the same level of accuracy on the same test data. (A) Image shows a biased model localizing the incorrect part of the chest 
radiograph as the opacity. (B) Image shows a properly trained model localizing the correct part of the chest radiograph. Green 
dots represent localization.
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instances). The uncertainty measure is based on the variance of 
the individual predictions (66).

3. Evidential deep learning methods treat learning as an evi-
dence acquisition process. These methods represent a model’s 
predictions as an evidential distribution of possible outputs, not 
a point estimate of a single output. The model is then trained to 
find the hyperparameters of the evidential distribution. Dirichlet 
and inverse-gamma distributions are examples of such evidential 
distributions that have been proposed for predictions from clas-
sification and regression models, respectively (67–69).

Evidential deep learning methods have two advantages over 
Bayesian and ensemble methods: (a) Applying them is less 
computationally costly, as there is no need to run multiple in-
stances of a model during training or inference; and (b) they can 
both quantify model uncertainty and calibrate the model dur-
ing training. Regarding the latter point, it should be noted that 
not all UQ methods can calibrate ML models. Likewise, not all 
methods for model calibration are capable of UQ, such as label 
smoothing (70) (Fig 6).

All these techniques can provide researchers with measures 
such as the confidence interval for model predictions and can 
ultimately help evaluate model uncertainty.

Conclusion
This report summarizes the main concepts, techniques, and ca-
veats in evaluating ML model performance. We reviewed the 
concept of fit and how loss function outputs can demonstrate 
underfitting or overfitting. We then contrasted internal and ex-
ternal evaluation and highlighted why external testing is superior 
to internal testing in bias detection. Finally, we discussed three 
main toolboxes and their most frequently used techniques that 
researchers can use to detect biases in model performance: per-
formance evaluation metrics, performance interpretation maps, 
and UQ techniques. In conclusion, evaluating model perfor-

mance is not a straightforward path of several steps; instead, it 
is a highly task-dependent process that could quickly become 
complicated. One should be mindful that evaluation of model 
performance is an effort to answer critical questions regarding 
model preparedness to be deployed in its target clinical settings. 
Therefore, it is crucial to include domain experts when selecting 
and interpreting the results of model performance evaluation.
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