Advances in MRI Around Metal

Pia M. Jungmann, MD,1,2,3* Christoph A. Agten, MD,1,2
Christian W. Pfirrmann, MD,1,3 and Reto Sutter, MD1,3

The prevalence of orthopedic metal implants is continuously rising in the aging society. Particularly the number of joint replacements is increasing. Although satisfying long-term results are encountered, patients may suffer from complaints or complications during follow-up, and often undergo magnetic resonance imaging (MRI). Yet metal implants cause severe artifacts on MRI, resulting in signal-loss, signal-pileup, geometric distortion, and failure of fat suppression. In order to allow for adequate treatment decisions, metal artifact reduction sequences (MARS) are essential for proper radiological evaluation of postoperative findings in these patients. During recent years, developments of musculoskeletal imaging have addressed this particular technical challenge of postoperative MRI around metal. Besides implant material composition, configuration and location, selection of appropriate MRI hardware, sequences, and parameters influence artifact genesis and reduction. Application of dedicated metal artifact reduction techniques including high bandwidth optimization, view angle tilting (VAT), and the multispectral imaging techniques multiacquisition variable-resonance image combination (MAVRIC) and slice-encoding for metal artifact correction (SEMAC) may significantly reduce metal-induced artifacts, although at the expense of signal-to-noise ratio and/or acquisition time. Adding advanced image acquisition techniques such as parallel imaging, partial Fourier transformation, and advanced reconstruction techniques such as compressed sensing further improves MARS imaging in a clinically feasible scan time. This review focuses on current clinically applicable MARS techniques. Understanding of the main principles and techniques including their limitations allows a considerate application of these techniques in clinical practice. Essential orthopedic metal implants and postoperative MR findings around metal are presented and highlighted with clinical examples.

Level of Evidence: 4
Technical Efficacy: Stage 3
are demonstrated. In this review, safety issues will not be covered. The review is based on a PubMed-search using the terms “metal artifact MRI” and “metal artifact MR.”

Metal Artifacts on MRI

Metal artifacts on MRI are mainly due to magnetic susceptibility differences between the metal implant and the surrounding tissue. Further mechanisms may impact the image quality, such as eddy currents induced within the metal by switched magnetic field gradients or locally induced radiofrequency fields.14–16

In order to perform MRI, a linear, homogenous main magnetic B_0 field is required for proper signal encoding and correct image reconstruction.17,18 Since human soft tissue is mostly diamagnetic and metal implants are paramagnetic, or even ferromagnetic, sharp transitions in magnetic susceptibility exist between metal implants and the surrounding soft tissue.9,13,19–22 These differences cause local susceptibility-related inhomogeneities of the main magnetic B_0 field, with rapid changes of the local magnetic field close to the implant. Therefore, the proton spins in these areas incorporate other frequencies than metal-free tissue would show. The proton spin frequency differences amount to 12–15 kHz at 1.5T and double at 3T.23

Due to the inhomogeneous B_0 field, three effects occur during MR image acquisition: 1) accelerated dephasing within a given voxel, 2) spatial misinterpretation of the signal, and 3) failure of frequency selective saturation pulses.13 Accelerated dephasing causes signal loss in a voxel, typically resulting in a four-leaf clover artifact (dipole pattern). A distorted readout gradient field with erroneous frequencies results in wrong spatial encoding with pixel dislocation in the frequency-encoding direction. Erroneous frequencies manifest in signal loss (black), signal pile-up (white), geometric distortion (“in-plane” distortion: signal at an erroneous place within one plane; arrowhead appearance of artifacts) (Fig. 1), and failure of frequency selective fat suppression techniques.11,24,25 For 2D multislice imaging, not only the frequency-encoding direction but also the slice-encoding direction uses the spin frequency for encoding. Therefore, the inhomogeneous B_0 field also results in a distorted slice-encoding gradient field with an erroneous slice profile (“through-plane” distortion involving adjacent slices; potato chip artifact) (Fig. 1).25 The frequency-encoding gradient polarity has also been described to have an influence on the appearance of metal artifacts.26 The phase-encoding direction is spared by the artifacts, since the relative phase of each phase-encoding step is not affected by a B_0 field offset.27

In contrast to computed tomography (CT) imaging, MRI artifacts are localized and are most severe adjacent to the implant.9 Distant structures may be imaged with fewer or no restrictions. Prior to imaging, it needs to be estimated whether the area of interest will be obscured by artifacts. In some circumstances, even standard MRI at 3T may be appropriate to address the clinical queries.28 For example, in patients with unilateral hip replacements, contralateral hips may be assessed without dedicated MARS sequences.

Factors Influencing Artifact Formation

There are several factors that influence artifact formation. Artifact size depends on the implant itself, the MR field strength used (1.5T vs. 3T), the MR protocol, and the MR sequence parameters, including advanced metal artifact reduction sequences with dedicated image acquisition and reconstruction techniques (Table 1).11 All parameters may be adjusted individually for every patient with his/her specific implant and clinical query. Patient compliance (long imaging times may not be possible due to motion artifacts or patient discomfort) as well as the infrastructure of each institution (1.5 vs. 3T scanner, new sequences, and advanced reconstruction techniques available) need to be taken into account when planning the MR examination.

Influence of the Implant

Implant material, size, configuration, and positioning influence artifact size on MRI.18,29 A round symmetric cross-sectional area of the metal implant is of advantage, while complex shapes, in particular sharp edges, cause more severe artifacts. Spherical implants such as the head of hip prostheses cause the typical cloverleaf artifact (dipole pattern). The material of the implant most extensively influences the artifact size in both in-plane and through-plane directions (Fig. 2).30 Nowadays, often titanium implants are used, which cause decidedly smaller artifacts on MRI as compared to cobalt-chromium, which again causes less severe artifacts than stainless-steel.30–34 However, titanium may only be utilized in areas with minimal wear, while stainless-steel or cobalt-chromium are used when more wear-inducing movement is expected. Recent developments try to further reduce the magnetic susceptibility of titanium by synthesizing aluminum-free titanium composite material.35 New materials are being tested to improve MRI around the metal implants further; for example, radiolucent carbon-fiber-reinforced polymers (CFRP), which were shown to have reduced artifacts on MRI as compared to titanium.36–38 Other recently introduced materials are biodegradable magnesium alloys. These cause fewer artifacts than titanium and stainless-steel on CT and MRI.38,39 However, even implants that cause more severe artifacts on MRI do not necessarily preclude proper radiological evaluation of the anatomic region, when imaging parameters are adjusted accordingly.34,40

Hardware and Pulse Sequences

Field Strength

Since the susceptibility-induced field inhomogeneity is doubled at 3T as compared to 1.5T, artifacts are less severe at
Therefore, when imaging a patient with metal implants, the straightforward way is using a 1.5T scanner. In general, metal artifact reduction techniques can be applied independent of field strength and reasonable artifact reduction is also possible at 3T. However, with increasing artifact level at 3T, current artifact-reducing techniques are facing rigorous limits in various respects, such as the maximum power of the gradient and the radiofrequency (RF) transmit hardware or patient heating (high specific absorption rates, SAR). Obviously, imaging at even higher field strengths such as at 7T would further increase artifact size. Currently, for 7T imaging, implant materials are still being tested regarding MR safety. Certain implants may be acceptable, whereas others may not be safe at 7T.

Among these potentially unsafe implants are endovascular grafts and several orthopedic implants.

Positioning

Smaller artifacts are encountered when positioning the implant with the long axis parallel to the main magnetic field. Exchanging phase-encoding direction and frequency-encoding direction may sometimes help to reduce artifacts, particularly if these cover one specific region of interest in the frequency-encoding direction.

Choice of Pulse Sequences

Gradient echo (GE) sequences show large regions of signal voids near metal due to intravoxel dephasing caused by B_0. Among these potentially unsafe implants are endovascular grafts and several orthopedic implants.
inhomogeneity. Spin echo (SE) sequences are much more robust due to the rephasing property of the refocusing pulse. Turbo spin echo (TSE) sequences are well established due to their higher scan efficiency as compared to (single) spin-echo. \(T_1 \)-weighted and intermediate (IM) weighted (w) TSE sequences with shorter echo times (TE) may show smaller artifacts than \(T_2 \)-weighted sequences (with longer TE). For IM-w sequences a TE of 35 msec may be used instead of 50 msec. With 3D sequences, the slice-encoding direction is also phase-encoded. Two variants have to be considered: nonselective and slab-selective excitation. For slab-selective excitation, the excited volume can be severely distorted in the through-plane direction. 3D sequences with nonselective excitation show a very different behavior: due to the lack of an encoding gradient for slice-selection, no spatial misselection occurs. Still, all spins with frequencies outside the excitation bandwidth of the RF-pulse will not be excited and those regions will appear dark. For that reason, 3D nonselective sequences may be of advantage, in case pulses of sufficiently high bandwidth are applied.

Fat Suppression Techniques

Failure of fat saturation is another major problem encountered in the presence of metal implants. The most commonly used spectral fat saturation is dependent on a homogenous magnetic field. Since spectral fat saturation relies on the fact that fat protons resonate at a fixed frequency being slightly offset from water protons, even small inhomogeneities of the \(B_0 \) field will prevent the saturation pulse to suppress the fat signal, or even worse, saturate the water signal instead (Fig. 4). Short tau inversion recovery (STIR) sequences are the sequences of choice for fat saturation when imaging around metal, since it is more resistant to \(B_0 \) inhomogeneities. Using an inversion recovery technique, the fat signal is nulled based on its short \(T_1 \) relaxation time. The sequence design has to provide a matched bandwidth of inversion pulse and excitation pulse, otherwise field distortions may lead to different spatial positions of inverted and excited spins causing the STIR contrast to fail. STIR results in a more homogenous fat saturation, at the expense of a lower signal-to-noise ratio.

![Figure 2: The severity of metal artifacts depends on the metal implant. While the standard total hip arthroplasty on the right (polyethylene-metal) only shows small residual artifacts, the resurfacing prosthesis (metal-on-metal) on the left shows severe surrounding signal-loss and distortion (same patient in a, b). STIR, short tau inversion recovery; SEMAC, slice-encoding for metal artifact correction; CS, compressed sensing.](image-url)
Some structures may be more difficult to evaluate on STIR sequences as compared to IM-weighted spectrally fat saturated sequences, such as cartilage or tendons. Another disadvantage of STIR fat saturation is that it is not helpful for tissue evaluation after contrast administration, since contrast enhancing tissue may also be saturated due to its reduced T_1 relaxation time.

There are two other possibilities that may be applied after contrast administration. First, identical pre- and post-contrast T_1-weighted images may be subtracted. The subtraction images demonstrate the contrast-enhancing, abnormal tissue nicely, with only minor obscuring artifacts, and it has been proven useful in clinical practice (Fig. 4). This technique avoids additional artifacts caused by fat suppression techniques, but one needs to be aware of the fact that it does not eliminate geometric distortion artifacts occurring on the original images.

Second, Dixon TSE sequences (chemical-shift-based separation of water and fat signal) may be used, which only have a slightly longer acquisition time than standard TSE sequences. Dixon techniques acquire separate in-phase and opposed-phase measurements and allow for secondary
water-only and fat-only image reconstructions. Images may be reconstructed with and without fat suppression. In contrast to spectral fat saturation, Dixon is less sensitive to magnetic field (B₀ and B₁) inhomogeneities; moderately varying field inhomogeneities can be corrected in the reconstruction. The robustness of the Dixon fat suppression against metal artifacts is intermediate (fewer artifacts than with spectral fat saturation, worse artifacts than with STIR techniques). Dixon techniques may be used as fat-saturated T₁-weighted sequence after contrast administration. IM-w Dixon sequences may be used instead of STIR. Although STIR works better for fat suppression in the presence of metal implants, the advantage of Dixon sequences is a high SNR and the production of both in-phase and fat-suppressed sequences within a single acquisition.

Conventional MR Pulse Sequence Optimization

As a first step, the existing conventional MR sequences should be optimized when scanning patients with metal implants by adapting basic acquisition parameters. Frequently, this optimization is already sufficient for routine clinical use, for example, for standard titanium implants at 1.5T. Measures to reduce artifacts address in-plane as well as through-plane artifacts. These include possibly switching frequency and phase-encoding direction, increasing the bandwidth of the receiver or transmit pulses, increasing the matrix size for in-plane artifact reduction, and reducing the slice thickness for through-plane artifact reduction. Using high-bandwidth RF pulses has also been shown to substantially reduce through-plane distortion artifacts, at the cost of an increased blurring. In contrast to previous assumptions, new studies have shown that longer echo trains do not reduce metal artifacts.

When applying these adjustments, one needs to keep in mind that increasing the readout bandwidth or increasing the resolution (either in-plane or thinner slices) will reduce the SNR, which needs to be compensated by longer scan times. Further, large RF bandwidths and short echo spacing...
lead to high SAR, in particular for TSE sequences exposing long echo trains of refocusing pulses, which may cause heating of the patient. Additionally, larger ranges of signal frequencies potentially cause more frequency-encoding problems. If the SAR exceeds critical thresholds it may need to be addressed by reducing the flip angle (60–130° rather than 180° refocusing pulses; again resulting in lower SNR), using longer repetition times (resulting in longer scan times and potentially altered MR contrast), or by reducing the number of slices. Therefore, there is a trade-off between the different aims during clinical image acquisition. The decision on which exact sequence to use in the specific case often needs to be made individually, depending on the localization, size, configuration, and material of the implant, on the query, the patients cooperation, and on scanner availability.

RECEIVER BANDWIDTH. A very efficient measure for reducing in-plane artifacts in conventional MR sequences is increasing the receiver bandwidth. If stronger imaging gradients are applied, each voxel is encoded by a wider frequency range. Thus, local frequency errors have less impact on the spatial encoding, ie, the translation of a certain frequency to the spatial position of the spin. Therefore, a higher bandwidth reduces signal misregistration in the in-plane frequency-encoding direction. This means the shift of spins with wrong frequencies in the image is reduced. Yet high bandwidths need strong gradients, which are sometimes the limiting factor. Doubling or tripling the bandwidth to 500–800 Hz/pixel is recommended, although this substantially reduces the SNR. Consequently, the scan averages may need to be increased to receive enough signal, which increases the scan time. On the other hand, using a high bandwidth allows the echo spacing to be reduced, resulting in less T_2 decay with less signal loss. However, these lead to higher SAR, which limits this approach. The bottom line is that increasing readout bandwidths reduces artifacts significantly, with a relevant SNR loss and without increased scan time when applied thoughtfully. For many clinical situations, using increased readout bandwidth is considered to be the most effective parameter for artifact reduction.

MATRIX SIZES. Further, for in-plane artifact reduction, increasing the image resolution (increased matrix size at constant field of view) reduces both in-plane distortions and intravoxel dephasing. Matrix sizes of 512 are recommended. The matrix increase is most efficient when performed in the frequency-encoding direction. To limit truncation artifacts the phase-encoding direction should at least have 60–80% of the matrix size of the frequency-encoding direction.

SLICE THICKNESS. Reducing the slice thickness, implicating a stronger slice selection gradient, aims to reduce through-plane distortion. As a result, wrong frequencies affect a smaller anatomic diameter in slice-encoding direction. Sometimes a slice thickness of 4 mm is sufficient (eg, for transverse spine imaging or tumor prostheses), but 3.5 mm or 3 mm improves artifact reduction further. Obviously, reducing the slice thickness increases scan time and reduces SNR again.

Specialized MARS Techniques
Since MRI around metal became an important clinical tool, efforts were made in recent years to develop dedicated MRI techniques. These have allowed drastically reducing residual metal artifacts. Techniques that are clinically applied and available to date are view-angle-tilting (VAT) and multi-spectral imaging (MSI) that include multiacquisition variable-resonance image combination (MAVRIC) and slice-encoding for metal artifact correction (SEMAC; combined with VAT). A combination of the latter two techniques have been reported as MAVRIC-SL and MSVAT-SPACE. General Electric (GE, Milwaukee, WI) calls its sequences with these dedicated MARS techniques “MAVRIC” (conventional MARS techniques plus MAVRIC) and “MAVRIC-SL (selective)” (MAVRIC/SEMAC hybrid). Philips (Best, Netherlands) calls its dedicated MARS techniques “O-MAR” (conventional MARS techniques plus VAT) and “O-MAR XD” (O-MAR plus SEMAC). Siemens (Erlangen, Germany) calls its dedicated MARS techniques “WARP” (conventional MARS techniques plus VAT) and “advanced WARP” (WARP plus SEMAC) (in alphabetic order).

The efficacy of these advanced metal artifact reduction techniques with respect to artifact reduction as compared to conventional sequences has been demonstrated in several studies (Fig. 5). They are available for 1.5T and 3T. However, unless the field inhomogeneities are very mild, artifact size is smaller and artifact reduction is more effective at 1.5T; therefore, overall image quality in patients with metal implants is superior at 1.5T (Fig. 3). By applying these advanced techniques in clinical practice, a sufficient in-plane and through-plane metal artifact reduction is achieved for most types of modern metal implants. Interleaved spectral bin acquisition strategies are being developed for overlapping MSI techniques that allow for flexible choice of the repetition time without any relevant crosstalk impact. It was described that both SEMAC and MAVRIC significantly reduce artifact extent compared to conventional sequences and that SEMAC and MAVRIC achieved similar artifact reduction. Serious drawbacks in using these standard versions of these techniques are long acquisition times, a significantly reduced SNR, and reduced spatial resolution and contrast. These can be addressed by using advanced
acquisition techniques with undersampling and advanced reconstruction techniques, as described below in more detail.

VIEW ANGLE TILTING (VAT). For VAT an additional compensatory, slice-selection gradient is applied simultaneously with the conventional readout gradient.\(^7,71,80\) This gradient causes a tilting of the read-encoding dimension towards the slice selection dimension (ie, the angle from which the excited slice is viewed is tilted) and thus a “shearing” of the voxels. Consequently, all off-resonance induced shifts along the readout direction within the excited slice are eliminated. The view angle depends on the ratio of slice gradient and readout gradient, which in turn depend on slice thickness, bandwidth of the RF pulse, and readout bandwidth. VAT does not increase scan time, but the slice shear induces some blurring.\(^80\) Using thin slices may keep the blurring at an acceptable level. The main limitation of VAT is that it does not correct for through-plane distortions. However, VAT plays an essential role in the implementation of the SEMAC technique.

SLICE-ENCODING FOR METAL ARTIFACT CORRECTION (SEMAC). SEMAC is used in combination with VAT. In addition to in-plane artifacts, SEMAC reduces through-plane distortions by correcting for signal that is excited in wrong slice positions.\(^71,72,81\) SEMAC is based on a 2D TSE sequence. Through-plane distortion correction becomes possible by applying additional phase-encoding steps (gradients) in the third dimension (slice selection) to register distortions for each individual slice. As in 2D sequences, single slices are excited with an RF pulse with the shape of minimally overlapping boxcar profiles, but the additional phase-encoding resolves a larger 3D slab around each slice position, which could be called a pseudo-3D acquisition. The information on slice distortion is used to correct the distortion of the acquired slice and adjacent slices during postprocessing.\(^72\) In SEMAC, the entire slice profile is coded and analyzed for each slice individually. The required coverage of this pseudo-3D acquisition is dependent on the extent of the geometric distortion caused by the metal implant. Exemplarily, while for some implants seven SEMAC steps may be sufficient since the through-plane distortion only involves the adjacent three slices, for stainless-steel or complex implants, 13 or even more SEMAC steps may not be sufficient to account for the entire through-plane distortion.\(^7,32\) The amount of SEMAC steps may be chosen

FIGURE 5: Clinical impact of advanced metal artifact reduction techniques. SEMAC (slice-encoding for metal artifact correction) images demonstrate abnormal findings (arrows) next to metal implants that are not visible on standard sequences (a) or conventional metal artifact reduction sequences with high bandwidth (HiBW) (b,c). a: Supraspinatus tendon re-tear in a patient with small screws in the greater tubercle after rotator cuff repair. b: Periprosthetic fluid collection in a patient with infection around an endo-exo-prosthesis of the thigh after amputation. c: Abscess formation at the neck of a total hip arthroplasty, which cannot be differentiated from artifacts on high bandwidth STIR images but can be correctly identified on STIR-SEMAC images. FS, fat saturated; HiBW, high bandwidth; STIR, short tau inversion recovery; SEMAC, slice-encoding for metal artifact correction; Cor., coronal.
individually for each scan. The larger the area of field inhomogeneities, the more slice-encoding steps need to be selected.82 Reducing these steps reduces scan time. Still, the 3D encoding of each slice is obviously very time-consuming, even though the increased SNR can be employed to use undersampling techniques such as partial Fourier and parallel imaging. A residual ripple artifact was described as typical for SEMAC sequences, which may effectively be addressed with slice overlap at an additional scan-time penalty (Fig. 1).83 It was demonstrated in several studies that SEMAC is superior to standard MR sequences, high bandwidth protocols, and simple VAT with respect to artifact reduction.1,2,84,85

MULTIAQUISITION VARIABLE-RESONANCE IMAGE COMBINATION (MAVRIC). MAVRIC is a spatially nonselective 3D acquisition technique to reduce metal artifacts.4,50,70 The 3D phase-encoding does not suffer from through-plane distortions, as is the case for any gradient based slice-selection. However, a single nonselective excitation pulse may not cover the full range of off-resonant frequencies near metal implants, meaning those spins are not excited and will appear dark in the image. MAVRIC solves this problem by acquiring several 3D slaps multiple times with discretely varying resonance frequency offsets (so-called spectral bins). The shape of the MAVRIC RF pulse resembles Gaussian profiles.25 All entire 3D slaps are finally combined and analyzed during postprocessing in order to build an artifact-reduced composite image.25 A potential disadvantage of MAVRIC is aliasing in the through-plane direction due to the spatially nonselective 3D volume excitation, particularly when imaging the hip or shoulder joint.44

MAVRIC-SL applies a selective excitation pulse and shares the same approach for through-plane artifact reduction as SEMAC. MAVRIC-SL excites single slices like SEMAC but uses the pulse profiles from MAVRIC.59,70 Not only standard TSE sequences and STIR, but also ultra-short echo time sequences (UTE)86 are compatible with MAVRIC. Using an undersampled 3D radial UTE-MAVRIC sequence, imaging of tissues with short T_2 such as tendons, ligaments, and cortical bone has been described as feasible adjacent to metallic implants.87

OFF-RESONANCE SUPPRESSION (ORS). Efforts have been made to improve MSI sequences further, such as by combining SEMAC (ORS-SEMAC) and MAVRIC (ORS-MAVRIC) with off-resonance suppression.88 In ORS the RF bandwidths and gradients of the excitation and the refocusing pulses are different. Only those spins that are in the range of both pulses contribute to the image. ORS limits the selected spatial-spectral selectivity in multispectral MRI. With ORS-SEMAC fewer phase-encoding steps are required compared with the standard SEMAC. Thus, ORS contributes to alias-free imaging with scan-time reduction and flexibility of scan-orientation.88 Disadvantages of ORS include signal voids and loss of homogeneity.88

OTHER TECHNIQUES. Several other dedicated MARS techniques have been developed, which however, have not yet been shown to be clinically feasible and feature a low spatial resolution or long acquisition times. These include prepolarized MRI (PMRI),89 single-point imaging (SPI),70 field mapping,94 sweep imaging with Fourier transformation (SWIFT),91 bSSFP banding artifact correction,92–96 dual-reversed-gradient acquisitions,97 and short echo-time projection reconstruction acquisitions.25

ADVANCED ACCELERATION TECHNIQUES. Besides optimizing dedicated metal artifact-reducing techniques, an additional or complementary approach is to optimize postprocessing image reconstruction techniques. Such as for CT imaging, also for MRI, advanced reconstruction algorithms including iterative reconstruction implemented in postprocessing are being developed.98 These aim to decrease artifacts further, increase image resolution, increase SNR, optimize image quality, and reduce scan time with optimized postprocessing algorithms in combination with advanced image acquisition techniques such as partial Fourier, undersampling, parallel imaging, SEMAC, and MAVRIC. This is of particular importance in order to reduce the extremely long acquisition times of SEMAC and MAVRIC to clinically feasible scan times.99

Advanced acquisition and reconstruction algorithms used in combination with SEMAC are sparsity-driven and compressed-sensing (CS)-based k-space undersampling of SEMAC data with iterative reconstruction (CS-SEMAC).98–101 CS-SEMAC uses the redundant, distorted information gained with the MSI acquisition for image optimization and allows reduction of the scan time by the use of undersampling.98 Using CS, the phase-encoding steps may be reduced, resulting in an 8-fold acceleration of k-space-encoding and in a dramatic reduction of the acquisition time.99,102 Image quality with CS-SEMAC is comparable to SEMAC sequences, but with a scan time of 4–5 minutes instead of 10–12 minutes, which drastically increases the clinical applicability.99 Still, these algorithms are very demanding in terms of numerical computation power and need long reconstruction times. Further, by exploration of missing image information, by smoothening the image and enhancing the contrast, a somewhat artificial impression of the image may occur.

Clinical Application

Clinical Relevance

Clinical relevance of MARS sequences and an impact on treatment management have been demonstrated in several studies (Fig. 5).7,84,103 Inclusion of MAVRIC or SEMAC to the imaging protocol allowed determining the need for surgery, and the type of surgery.103,104 Exemplary MR protocols for the spine, hip, and knee are presented in Table 2.
TABLE 2. Exemplary MR Protocols for Patients With Metal Implants at the Spine, Hip, and Knee

<table>
<thead>
<tr>
<th>Spine pulse sequences</th>
<th>Coronal STIR</th>
<th>Coronal T2</th>
<th>Sagittal T1</th>
<th>Transverse T2</th>
<th>Sagittal T1 Dixon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced MARS techniques</td>
<td>VAT</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Repetition time (msec)</td>
<td>4350</td>
<td>3000</td>
<td>500</td>
<td>3000</td>
<td>612</td>
</tr>
<tr>
<td>Echo time (msec)</td>
<td>44</td>
<td>100</td>
<td>7.7</td>
<td>90</td>
<td>11</td>
</tr>
<tr>
<td>Slice thickness (mm)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Distance factor (%)</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Refocusing flip angle (°)</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Field of view (FOV; mm)</td>
<td>320</td>
<td>300</td>
<td>300</td>
<td>225</td>
<td>300</td>
</tr>
<tr>
<td>Pixel size (mm)</td>
<td>1.0×1.0</td>
<td>0.7×0.7</td>
<td>0.7×0.7</td>
<td>0.5×0.5</td>
<td>0.8×0.8</td>
</tr>
<tr>
<td>Bandwidth (Hz/ Pixel)</td>
<td>504</td>
<td>507</td>
<td>507</td>
<td>587</td>
<td>303</td>
</tr>
<tr>
<td>Averages</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Turbo factor</td>
<td>15</td>
<td>18</td>
<td>3</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>Inversion time (msec)</td>
<td>170</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Number of slices</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Slice-encoding steps</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phase encoding direction</td>
<td>F ≫ H</td>
<td>H ≫ F</td>
<td>H ≫ F</td>
<td>A ≫ P</td>
<td>H ≫ F</td>
</tr>
<tr>
<td>Acquisition time (min:sec)</td>
<td>2:03</td>
<td>4:53</td>
<td>4:29</td>
<td>2:41</td>
<td>3:57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hip pulse sequences</th>
<th>Coronal STIR</th>
<th>Coronal T2</th>
<th>Sagittal T1</th>
<th>Transverse STIR</th>
<th>Transverse T1 Dixon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced MARS techniques</td>
<td>SEMAC CS</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Repetition time (msec)</td>
<td>4570</td>
<td>4000</td>
<td>550</td>
<td>4000</td>
<td>463</td>
</tr>
<tr>
<td>Echo time (msec)</td>
<td>36</td>
<td>58</td>
<td>7.3</td>
<td>31</td>
<td>11</td>
</tr>
<tr>
<td>Slice thickness (mm)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Distance factor (%)</td>
<td>0</td>
<td>50</td>
<td>10</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>Refocusing flip angle (°)</td>
<td>140</td>
<td>150</td>
<td>180</td>
<td>150</td>
<td>135</td>
</tr>
<tr>
<td>Field of view (FOV; mm)</td>
<td>300</td>
<td>220</td>
<td>200</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>Pixel size (mm)</td>
<td>1.2×1.2</td>
<td>0.4×0.4</td>
<td>0.6×0.6</td>
<td>0.5×0.5</td>
<td>0.6×0.6</td>
</tr>
<tr>
<td>Bandwidth (Hz/ Pixel)</td>
<td>501</td>
<td>391</td>
<td>434</td>
<td>449</td>
<td>391</td>
</tr>
<tr>
<td>Averages</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Turbo factor</td>
<td>9</td>
<td>15</td>
<td>3</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Inversion time (msec)</td>
<td>160</td>
<td>—</td>
<td>—</td>
<td>150</td>
<td>—</td>
</tr>
<tr>
<td>Number of slices</td>
<td>29</td>
<td>20</td>
<td>29</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>Slice-encoding steps</td>
<td>13</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phase encoding direction</td>
<td>R ≫ L</td>
<td>R ≫ L</td>
<td>A ≫ P</td>
<td>A ≫ P</td>
<td>A ≫ P</td>
</tr>
<tr>
<td>Acquisition time (min:sec)</td>
<td>5:12</td>
<td>2:36</td>
<td>3:34</td>
<td>3:54</td>
<td>3:56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Knee pulse sequences</th>
<th>Coronal STIR</th>
<th>Coronal T1</th>
<th>Sagittal IM</th>
<th>Transverse STIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced MARS techniques</td>
<td>SEMAC</td>
<td>—</td>
<td>SEMAC CS</td>
<td>—</td>
</tr>
<tr>
<td>Repetition time (msec)</td>
<td>4500</td>
<td>491</td>
<td>4380</td>
<td>5420</td>
</tr>
<tr>
<td>Echo time (msec)</td>
<td>39</td>
<td>11</td>
<td>36</td>
<td>31</td>
</tr>
</tbody>
</table>
Several abnormalities around orthopedic implants may be visualized by using MARS sequences.49,105 Aseptic loosening of an implant is characterized by a circumferential lucency around the implant or the cement, which is progressively enlarging over time,44,105 while an osteolysis has a more localized extent (Fig. 6).106 There is an ongoing debate whether radiography, MRI, or CT is more accurate with respect to detection of loosening and osteolysis.106–109 With improving techniques MRI may become more sensitive.109 With metal-on-metal total hip arthroplasty (THA) and the associated major risk of adverse local tissue reactions (ALTR), MARS gained importance.53,110–115 But also with other types of orthopedic implants the so-called “pseudotumors,” initiated by excessive wear, may be observed.7,113,115,116 Periprosthetic infection, fluid collections, and abscesses or osteomyelitis are further severe complications that require prompt treatment. Nonimplant associated soft-tissue abnormalities may be found on MARS sequences, such as cartilage defects, tendon tears, muscle atrophy and fatty infiltration, meniscal or labral lesions, disc abnormalities, spinal canal stenosis, neural injury, or pathology.49,105,117,118 Recurrence of a tumor or a newly developed tumorous formation is another important clinical entity where MARS sequences may be utilized, both for detection and classification of findings.7,119,120

Spine

For metal artifact reduced imaging of the spine, the frequency-encoding direction should be positioned along the long axis of the pedicle screws in sagittal and transverse images (anterior–posterior).121 The utility of SEMAC for artifact reduction in spine imaging has been demonstrated in several studies.84,121–126 SEMAC sequences enabled significantly improved periprosthetic visualization of the pedicles, vertebral body, dural sac, and neural foramina.84 Still, acquisition of MARS spine images with diagnostically sufficient SNR and contrast is challenging.84 Turbo factor 17 3 11 17

<table>
<thead>
<tr>
<th>Knee pulse sequences</th>
<th>Coronal STIR</th>
<th>Coronal T1</th>
<th>Sagittal IM</th>
<th>Transverse STIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slice thickness (mm)</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>Distance factor (%)</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Refocusing flip angle (°)</td>
<td>150°</td>
<td>180</td>
<td>150</td>
<td>180</td>
</tr>
<tr>
<td>Field of view (FOV; mm)</td>
<td>200</td>
<td>170</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>Pixel size (mm)</td>
<td>0.6×0.6</td>
<td>0.4×0.4</td>
<td>0.5×0.5</td>
<td>0.4×0.4</td>
</tr>
<tr>
<td>Bandwidth (Hz/ Pixel)</td>
<td>539</td>
<td>429</td>
<td>601</td>
<td>395</td>
</tr>
<tr>
<td>Averages</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Turbo factor</td>
<td>17</td>
<td>3</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>Inversion time (msec)</td>
<td>160</td>
<td>—</td>
<td>—</td>
<td>160</td>
</tr>
<tr>
<td>Number of slices</td>
<td>27</td>
<td>24</td>
<td>34</td>
<td>39</td>
</tr>
<tr>
<td>Slice-encoding steps</td>
<td>8</td>
<td>—</td>
<td>15</td>
<td>—</td>
</tr>
<tr>
<td>Phase encoding direction</td>
<td>R ⊳ L</td>
<td>R ⊳ L</td>
<td>A ⊳ P</td>
<td>R ⊳ L</td>
</tr>
<tr>
<td>Acquisition time (min:sec)</td>
<td>4:54</td>
<td>3:23</td>
<td>4:33</td>
<td>5:00</td>
</tr>
</tbody>
</table>

MARS, metal artifact reduction sequences; STIR, short tau inversion recovery; CS, compressed sensing; IM, intermediate weighted.
fewer artifacts on CT and MRI. Besides the aforementioned complications, typical clinical queries are postoperative intradural or epidural hematoma, abscess or tumor, spondylodiscitis, neuroforaminal stenosis, disc protrusion, or myelopathy.124,125

Shoulder

MARS imaging can successfully be performed at the shoulder.3,105,130–133 However, since the shoulder is not located in the isocenter of the main magnetic field but peripherally with a more inhomogeneous magnetic field, severe inhomogeneity artifacts are encountered.132,134 Additionally, spherical components such as the humeral head replacement cause typical cloverleaf artifacts.132,134 In cases with nonmetallic implants or suture anchors, standard sequences may be used successfully. If larger artifacts are encountered or specific questions with respect to the metal implant are supposed to be answered, advanced MARS sequences are required.

Evaluation of the integrity of rotator cuff tendons and muscles is a frequent question after rotator cuff repair and after open reduction internal fixation (ORIF) of a proximal humerus fracture (Figs. 5 and 7)).105,133 Function and integrity of the rotator cuff is essential after implantation of an anatomical shoulder prosthesis.135 Subscapularis rupture and fatty infiltration as a common late cause of anterior instability following shoulder arthroplasty may be evaluated on MARS images.105 Evaluation of the integrity, atrophy, and fatty infiltration of the delta muscle are important before and after reverse shoulder arthroplasty.105 Attention needs to be paid to the acromion after reverse arthroplasty to exclude fractures or stress reactions that are common at these locations.136 Bone marrow edema and loosening may specifically be observed at the inferior glenoid in case of

![FIGURE 6: Important complications around metal implants. Arrows indicate respective pathologies. a: Periprosthetic osteolysis in a patient with a total hip arthroplasty. b: Pseudotumor formation (adverse local tissue reactions (ALTR)) around a metal-on-metal hip arthroplasty. c: Aseptic loosening of a total hip arthroplasty. d: Abscess formation adjacent to a proximal femur replacement. STIR, short tau inversion recovery; SEMAC, slice-encoding for metal artifact correction; CS, compressed sensing; HiBW, high bandwidth; Gd., Gadolinium.](image-url)
anatomical or reversed arthroplasties. In case of isolated replacement of the humeral head (shoulder hemiarthroplasty; anatomical glenoid remains), glenoid osteoarthritis may be observed during follow-up.137 In patients with shoulder instability, bone consolidation between the glenoid and the transferred coracoid process may be evaluated after the Latarjet procedure (Fig. 7). More frequently than in other joints, synovitis and adhesive capsulitis (frozen shoulder) are observed postoperatively.

Elbow/Wrist/Hand

At the elbow and at the wrist, joint prostheses are rare (Fig. 8).60 Screws for fracture fixation or ligament reattachment are found more commonly. While small scaphoid screws may be imaged without major limitations, more complex hardware such as the frequent palmar ORIF for distal radius fractures causes more severe artifacts even when using advanced techniques. Concomitant injuries to cartilage, ligaments or triangular disc as well as carpal injuries or post-traumatic osteoarthritis may be depicted on MARS imaging.138,139

Hip

The hip joint represents the joint that is imaged most frequently with MARS sequences (Fig. 9).115 MAVRIC has been shown to be more sensitive than standard TSE sequences for determining the volume of osteonecrosis of the femoral head in patients with instrumentations for femoral neck

FIGURE 7: Examples of MARS sequences for shoulder MRI. a: Patient with a shoulder hemiarthroplasty. The supraspinatus tendon and its insertion can nicely be depicted (arrow). b: Patient with a Philos plate for a proximal humeral fracture. The demarcation line of a humeral head necrosis can be depicted without difficulty (arrow). c: Patient with a Latarjet procedure and a broken screw. The transferred coracoid process (dashed arrow) shows no osseous consolidation to the glenoid and a fluid formation in the osseous gap (arrow).

FIGURE 8: MARS sequences for MRI of the distal forearm. In a patient with an ulnar head prosthesis (a), STIR SEMAC images still demonstrate substantial artifacts around the prosthesis (b, arrow), whereas the rest of the image features a stable fat saturation. On intermediate weighted SEMAC sequences without fat saturation (c) the triangular fibrocartilage complex (TFCC; arrow) and the proximal carpal row are depicted nicely. STIR, short tau inversion recovery; SEMAC, slice-encoding for metal artifact correction; IM, intermediate weighted.
fractures. But most reports on the utility of MARS imaging are on hip prostheses, since total hip arthroplasty (THA) is the most commonly performed prosthesis implantation. MSI imaging has been shown to be clinically relevant for imaging of THA. Almost half of the abnormal imaging findings were missed on STIR-high bandwidth sequences compared with STIR-SEMAC images, while T$_1$-high bandwidth imaging was similar to T$_1$-SEMAC imaging. MARS imaging of THA became particularly relevant due to severe complications after metal-on-metal hip prostheses. In the algorithmic approach to diagnosis and management of metal-on-metal arthroplasty published in 2012 by the hip society, imaging should include ultrasound or metal artifact reduction sequence MRI in addition to plain radiography. MARS sequences including VAT and SEMAC have been shown to be useful for detection, staging, and progression analyses of adverse local tissue reactions (ALTR) in the context of

FIGURE 9: Examples of MARS sequences for hip MRI in patients with total hip arthroplasties. a: Extensive osteolysis of the acetabulum. b: Iliopsoas bursitis. c: Postoperative bone marrow edema posterior to the acetabular cup.

FIGURE 10: Examples of MARS sequences for knee MRI in patients with total (a–c, e–f) knee arthroplasty or unicompartimental (d) knee arthroplasty. a: Arthrofibrosis. b: Rupture of the quadriceps tendon. c: Loosening of the patella replacement. d: Proximal rupture of the lateral collateral ligament. e: Bone infarct. f: Rupture of the medial patellofemoral ligament. HiBW, high bandwidth; STIR, short tau inversion recovery; SEMAC, slice-encoding for metal artifact correction.
metal-on-metal hip prostheses. Several studies reported ALTR findings on MRI in up to a third of asymptomatic patients, and despite missing laboratory findings, there is no significant relation between MRI findings and pain or a priori risk factors, which underlines the importance of MRI. Other findings after THA include periprosthetic bone marrow edema, periprosthetic fracture, synovitis, infection, hemorrhage, capsular thickening or adhesions, component displacement, heterotopic ossification, iliopsoas impingement, and bursitis or iliopsoas tendon rupture. An internal impingement may cause edematous changes in the piriformis muscle. Symptoms may further arise from abductor tendon pathology, trochanteric bursitis, gluteal muscle atrophy, or fatty infiltration.

Knee

After the hip, the knee is the second most frequently replaced joint. MARS techniques work successfully at the knee despite the minor surrounding soft tissue and the more complex metal anatomy (Fig. 10). For unilateral knee replacements, a clinical relevance was shown for SEMAC STIR sequences. SEMAC STIR sequences were useful in detecting bone marrow edema and influenced the orthopedic surgeons’ decisions towards surgery, while IM-
w. SEMAC showed no clinical benefit. IM-w SEMAC was worse in detecting meniscal lesions than the corresponding high-bandwidth sequence, underlining the importance of using a combination of appropriate sequences.

In the presence of a TKA pseudotumors, osteolysis, loosening, periprosthetic fracture, and infection are frequent queries. Other possible complications after TKA are arthrofibrosis, collateral ligament rupture, quadriceps tendon rupture, retropatellar osteoarthritis, and patellar clunk syndrome. Malalignment of the prosthetic components may also be appropriately measured using MARS MRI. When performing knee MRI in the presence of other metal implants, it needs to be estimated how much the region of interest will be obscured by artifacts when using standard sequences: For example, in patients with anterior cruciate ligament reconstruction, metal implants only show metal artifacts and insufficient fat saturation right next to the implants but the rest of the knee joint may be evaluated sufficiently.

Ankle/Foot
A variety of foot and ankle surgeries comprise metal hardware implantation, such as internal fixation for fractures, realignment surgeries (eg, hallux valgus), or arthrodeses. Cartilage restorative procedures often require osteotomy of the medial malleolus with consecutive screw fixation. After syndesmosis reconstruction with suture button or after screw removal, usually standard MR sequences may be used without diagnostic restrictions with respect to cartilage or ligament evaluation (Fig. 11). It was shown that 1.5T and 3T MRI can be used for evaluation of the articular surface of the ankle, if titanium screws are at least 3 mm distant. MRI with Dixon sequences and spoiled gradient-echo (SPGR) sequences enabled significantly improved visualization of articular cartilage in patients with metal implants of the ankle, with reduced metal artifacts and a more uniform fat saturation compared to frequency selective fat suppression. However, no significant improvement was found in the visibility of ligaments. On ankle MARS MRI, detection of osteochondral lesions, syndesmosis ruptures, osteoarthritis, nonunion of fractures or arthrodesis, tendon injury, or avascular necrosis of the talus is possible (Fig. 11). At the foot, stress reactions with bone marrow edema, fractures, infection, abscess, and osteomyelitis can be diagnosed or excluded on MARS MRI after reconstructive surgeries with metal implants such as for hallux valgus or neuropathic arthropathy (Fig. 11).

Other Applications
Besides orthopedic implants, other applications of MARS sequences in the presence of metal implants include radiotherapy planning close to implants, cerebral MRI in the presence of intracranial aneurysm clips, cardiac imaging, odontics, and breast imaging. However, these fields are not covered in this review.

SUMMARY
In conclusion, MRI around metal has improved significantly in recent years. Knowing the characteristics of both the implant and the area to be visualized on MRI may considerably improve the image quality, since a suitable MR protocol can be chosen and adapted. Depending on the material composition, the configuration, and size of the metal implant and the implant orientation, the size of the metal artifacts on MRI varies substantially. For all techniques, 1.5T instead of 3T MR scanners are preferable in the presence of metal, although adequate image quality may also be obtained at 3T. Appropriate pulse sequences include TSE sequences instead of gradient echo sequences and STIR sequences or Dixon sequences instead of standard spectral fat saturation.

Strategies for optimizing standard sequences include increasing the receiver bandwidth and reducing the slice thickness and pixel size. Dedicated advanced metal artifact reducing techniques such as VAT, MAVRIC, and SEMAC are currently being developed further and promise a strong metal artifact reduction in clinically reasonable scanning times, especially together with postprocessing reconstruction algorithms such as compressed sensing (iterative reconstruction) combined with undersampling. Using these techniques, MRI becomes feasible for most orthopedic implants. Yet the scan protocol necessitates individual adjustments in many patients to achieve an optimal image quality. The MR examinations always need be evaluated in conjunction with plane radiography. Since plane radiography provides a cost-effective, easily acquired overview of implants and bone (which is only visible indirectly on MRI), it remains the basis for monitoring patients in a long-term follow-up.

Acknowledgments
The authors thank Mathias Nittka, PhD (Siemens AG, Siemens Healthineers, Erlangen, Germany) for helpful feedback and thorough review of the article.

References

74. Reichert M, Ai T, Morelli JN, Nittka M, Rutge VM. Metal artefact reduction in MRI at both 1.5 and 3.0T using slice-encoding for metal artefact correction and view angle tilting. Br J Radiol 2015;88:20140601.

127. Lee YH, Lim D, Kim E, Kim S, Song HT, Suh JS. Feasibility of fat-saturated T2-weighted magnetic resonance imaging with slice-

132. La Rocca Vieira R, Rybak LD, Recht M. Technical update on magneti-

140. Goldstein JM, Fehring TK, Fehring KA. Cystic adverse local tissue reactions in asymptomatic modular metal-on-metal total hips may decrease over time. J Arthroplasty 2016;31:1589–1594.

156. Saeedi M, Thomas A, Shellock FG. Evaluation of MRI issues at 3-

157. Plodkowski AJ, Hayter CL, Miller TT, Nguyen JT, Potter HG. Lamel-

162. Saeedi M, Thomas A, Shellock FG. Evaluation of MRI issues at 3-

164. Cortes AR, Abdala-Junior R, Weber M, Arita ES, Ackerman JL. Influ-