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Abstract

Following the success of deep learning in a wide range of applications, neural network-based 

machine learning techniques have received interest as a means of accelerating magnetic resonance 

imaging (MRI). A number of ideas inspired by deep learning techniques from computer vision and 

image processing have been successfully applied to non-linear image reconstruction in the spirit of 

compressed sensing for both low dose computed tomography and accelerated MRI. The additional 

integration of multi-coil information to recover missing k-space lines in the MRI reconstruction 

process, is still studied less frequently, even though it is the de-facto standard for currently used 

accelerated MR acquisitions. This manuscript provides an overview of the recent machine learning 

approaches that have been proposed specifically for improving parallel imaging. A general 

background introduction to parallel MRI is given that is structured around the classical view of 

image space and k-space based methods. Both linear and non-linear methods are covered, 

followed by a discussion of recent efforts to further improve parallel imaging using machine 

learning, and specifically using artificial neural networks. Image-domain based techniques that 

introduce improved regularizers are covered as well as k-space based methods, where the focus is 

on better interpolation strategies using neural networks. Issues and open problems are discussed as 

well as recent efforts for producing open datasets and benchmarks for the community.
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I. Introduction

During recent years, there has been a substantial increase of research activity in the field of 

medical image reconstruction. One particular application area is the acceleration of 

Magnetic Resonance Imaging (MRI) scans. This is an area of high impact, because MRI is 

the leading diagnostic modality for a wide range of exams, but the physics of its data 

acquisition process make it inherently slower than modalities like X-Ray, Computed 

Tomography or Ultrasound. Therefore, the shortening of scan times has been a major driving 

factor for routine clinical application of MRI.

One of the most important and successful technical developments to decrease MRI scan time 

in the last 20 years was parallel imaging [1–3]. All state of the art clinical MRI scanners 

from major vendors are equipped with parallel imaging technology, and it is the default 

option for a large number of scan protocols. As a consequence, there is a substantial benefit 

of using multi-coil data for machine learning based image reconstruction. Not only does it 

provide a complementary source of acceleration that is unavailable when operating on single 

channel data, or on the level of image enhancement and post-processing, it also is the 

scenario that ultimately defines the use-case for accelerated clinical MRI, which makes it a 

requirement for clinical translation of new reconstruction approaches. The drawback is that 

working with multi-coil data adds a layer of complexity that creates a gap between cutting 

edge developments in deep learning [4] and computer vision, where the default data type are 

images. The goal of this manuscript is to bridge this gap by providing both a comprehensive 

review of the properties of parallel MRI, together with an introduction how current machine 

learning methods can be used for this particular application.

A. Background on multi-coil acquisitions in MRI

The original motivation behind phased array receive coils was to increase the SNR of MR 

measurements. These arrays consist of nc multiple small coil elements, where an individual 

coil element covers only a part of the imaging field of view. These individual signals are 

then combined to form a single image of the complete field of view. The central idea of all 

parallel imaging methods is to complement spatial signal encoding of gradient fields with 

information about the spatial position of these multiple coil elements. For multiple receiver 

coils, the MR signal equation can be written as follows

fj kx, ky = ∫
−∞

∞

∫
−∞

∞

u(x, y)cj(x, y)e−i kxx + kyy dxdy . (1)

In Equation (1), fj is the MR signal of coil j = 1, …, nc, u is the target image to be 

reconstructed, and cj is the corresponding coil sensitivity. Parallel imaging methods use the 
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redundancies in these multi-coil acquisitions to reconstruct undersampled k-space data. 

After discretization, this undersampling is described in matrix-vector notation by

fj = FΩCju + nj, (2)

where u is the image to be reconstructed, fj is the acquired k-space data in the jth coil, Cj is a 

diagonal matrix containing the sensitivity profile of the receiver coil [2], FΩ is a partial 

Fourier sampling operator that samples locations Ω, and nj is measurement noise in the jth 

coil.

Historically, parallel imaging methods were put in two categories: Approaches that operate 

in image domain, inspired by the sensitivity encoding (SENSE) method [2] and approaches 

that operated in k-space, inspired by simultaneous acquisition of spatial harmonics 

(SMASH) [1] and generalized autocalibrating partial parallel acquisition (GRAPPA) [3]. 

This is conceptually illustrated in Figure 1. While these two schools of thought are closely 

related, we organized this document according to these classic criteria for historical reasons.

II. Classical parallel imaging in image space

Classical parallel imaging in image space follows the SENSE method [2], which can be 

identified by two key features. First, the elimination of the aliasing artifacts is performed in 

image space after the application of an inverse Fourier transform. Second, information about 

receive coil sensitivities is obtained via precomputed, explicit coil sensitivity maps from 

either a separate reference scan or from a fully sampled block of data at the center of k-space 

(all didactic experiments that are shown in this manuscript follow the latter approach). The 

reconstruction in image domain in Figure 1 shows three example undersampled coil images, 

corresponding coil sensitivity maps and the final reconstructed images from a brain MRI 

dataset. The coil sensitivities were estimated using ESPIRiT [5].

MRI reconstruction in general and parallel imaging in particular can be formulated as an 

inverse problem. This provides a general framework that allows easy integration of the 

concepts of regularized and constrained image reconstruction as well as machine learning 

that are discussed in more detail in later sections. Equation (1) can be discretized and then 

written in matrix-vector form

f = Eu + n, (3)

where f contains all k-space measurement data points and E is the forward encoding 

operator that includes information about the sampling trajectory and the receive coil 

sensitivities and n is measurement noise. The task of image reconstruction is to recover the 

image u. In classic parallel imaging the number of receive elements is usually larger than the 

acceleration factor, and Equation (3) is solved in the least-squares-sense via the Pseudo-

Inverse (E*E)−1E, where E* denotes the conjugate transpose of E. The reason why the 

acceleration factor is smaller than the number of coils is that these individual coil elements 

do not measure completely independent information. This leads to an increase of the 

condition number (E*E)−1 and therefore, an ill-posed problem. This can lead to severe noise 

amplification in the reconstruction. In the original SENSE formulation [2], this noise 
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amplification can be described exactly via the g-factor. In practice, Equation (3) is usually 

solved in an iterative manner, which is the topic of the following sections.

A. Overview of conjugate gradient SENSE (CG-SENSE)

The original SENSE approach is based on equidistant or uniform Cartesian k-space 

sampling, where the aliasing pattern is defined by a point spread function that has a small 

number of sharp equidistant peaks. This property leads to a small number of pixels that are 

folded on top of each other, which allows a very efficient implementation [2]. When using 

alternative k-space sampling strategies like non-Cartesian acquisitions or random 

undersampling, this is no longer possible and image reconstruction requires a full inversion 

of the encoding matrix in Equation (3). This operation is demanding both in terms of 

compute and memory requirements (the dimensions of E are the total number of acquired k-

space points times N2 where N is the size of the image matrix that is to be reconstructed), 

which lead to the development of iterative methods, in particular the CG-SENSE method 

introduced by Pruessmann et al. as a follow up of the original SENSE paper [6]. In iterative 

image reconstruction the goal is to find a û that is a minimizer of the following cost 

function, which corresponds to the quadratic form of the system in Equation (3)

u ∈ arg min
u

1
2 Eu − f

2

2
. (4)

In standard parallel imaging, E is linear and Equation (4) is a convex optimization problem 

that can be solved with a large number of numerical algorithms like gradient descent, 

Landweber iterations or the conjugate gradient method. However, since MR k-space data are 

corrupted by noise, it is common practice to stop iterating before theoretical convergence is 

reached, which can be seen as a form of regularization. Regularization can be also 

incorporated via additional constraints in Equation (4), which will be covered in the next 

section.

As a didactic example for this manuscript, we will use a single slice of a 2D coronal knee 

exam to illustrate various reconstruction approaches. This data were acquired on a clinical 

3T system (Siemens Skyra) using a 15 channel phased array knee coil. A turbo spin echo 

sequence was used with the following sequence parameters: TR=2750ms, TE=27ms, echo 

train length=4, field of view 160mm2 in-plane resolution 0.5mm2, slice thickness 3mm. 

Readout oversampling with a factor of 2 was used, and all images were cropped in the 

frequency encoding direction (superior-inferior) for display purposes. In the spirit of 

reproducible research, data, sampling masks and coil sensitivity estimations that were used 

for the numerical results in this manuscript are available online1. Figure 3 shows an example 

of a retrospectively undersampled CG-SENSE reconstruction with an acceleration factor of 

4. The numeric tolerance with respect to the norm of the normalized residual was set to 5 · 

10−5, which resulted in 10 CG iterations.

1https://app.globus.org/file-manager?originid=15c7de28-a76b-11e9-821c-02b7a92d8e58&originpath=\%2Fknee\%2F/: coronal 
proton density (pd) weighted data, subject 17, slice 25.
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B. Nonlinear regularization and compressed sensing

As mentioned in Section II, the acceleration factor in classic parallel imaging is limited by 

the number of independent channels of the receive coil array. To push the boundaries of this 

limit, additional a-priori knowledge can be introduced. This is achieved by extending 

Equation (4) via additional penalty terms, which results in a constrained optimization 

problem defined in Equation (5), which forms the cornerstone of almost all modern MRI 

reconstruction methods

u ∈ arg min
u

1
2 Eu − f

2

2
+ ∑

i
λiΨi(u) . (5)

Here, Ψi are dedicated regularization terms and λi are regularization parameters that balance 

the trade-off between data fidelity and prior. Since the introduction of compressed sensing 

and its adoption for MRI [7, 8], nonlinear regularization terms, in particular l1-norm based 

ones, are popular in image reconstruction and are commonly used in parallel imaging [8–

14]. The goal of these regularization terms is to provide a separation between the target 

image that is to be reconstructed from the aliasing artifacts that are introduced due to an 

undersampled acquisition. Therefore, they are usually designed in conjunction with a 

particular data sampling strategy. The classic formulation of compressed sensing in MRI [7] 

is based on sparsity of the images in a transform domain in combination with pseudo-

random sampling, which introduces aliasing artifacts that are incoherent in the respective 

domain. While wavelets are a popular choice for static imaging, sparsity in the Fourier 

domain is commonly used for dynamic applications, where periodic motion is encountered. 

Total variation based methods have been used successfully in combination with radial and 

spiral acquisitions as well as in dynamic imaging. More advanced regularizers based on low-

rank properties have also been utilized. In contrast to linear reconstructions, where the 

quality of a reconstruction can be assessed via SNR and g-factor maps, the evaluation of 

image quality is not trivial in the context of nonlinear reconstructions. Noise is suppressed at 

the cost of introducing a bias from the nonlinear regularizer. Therefore, it is generally not 

recommended to use SNR-based metrics as a measure of image quality. Image quality is 

therefore usually estimated with metrics like NRMSE, SSIM or PSNR, which compare a 

reconstruction with a reference gold standard, ideally a fully sampled reconstruction. 

However, this is generally only possible in a research setting, and image quality evaluation 

of nonlinear reconstruction methods without a reference is still an open research problem in 

the field.

Figure 3 shows an example of a nonlinear combined parallel imaging and compressed 

sensing reconstruction with a Total Generalized Variation [10] constraint. The raw data was 

scaled such that the maximum magnitude value in k-space is 1 and the regularization 

parameter λ was set to 2.5 · 10−5 and the reconstruction was using 1000 primal-dual 

iterations. While it is usually recommended to use a pseudo-random acquisition when 

combining parallel imaging with compressed sensing, we chose equidistant sampling for our 

experiments here for consistency with classic parallel imaging reconstruction methods. A 

more detailed discussion of this is provided in Section IV and in [15]. The nonlinear 
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regularization still provides a superior reduction of aliasing artifacts and noise suppression in 

comparison to the CG-SENSE reconstruction from the last section.

III. Classical parallel imaging in K-space

Parallel imaging reconstruction can also be formulated in k-space as an interpolation 

procedure. The initial connections between the SENSE-type image-domain inverse problem 

approach and k-space interpolation has been made more than a decade ago [16], where it 

was noted that the forward model in Equation (3) can be restated in terms of the Fourier 

transform, κ of the combined image, u as

f = EF * κ ≜ Gacqκ, (6)

where E is the forward encoding operator and F is the discrete Fourier transform (DFT) 

matrix as before, f corresponds to the acquired k-space lines across all coils, and Gacq is a 

linear operator. Similarly, the unacquired k-space lines across all coils can be formulated 

using

funacq  = Gunacqκ . (7)

Combining these two equations yield

funacq  = Gunacq Gacq
† f . (8)

Thus, the unacquired k-space lines across all coils can be interpolated based on the acquired 

lines across all coils, assuming the pseudo-inverse, Gacq
† , of Gacq exists [16]. Thus, the main 

difference between the k-space parallel imaging methods and the aforementioned image 

domain parallel imaging techniques is that the former produces k-space data across all coils 

at the output, whereas the latter typically produces one image that combines the information 

from all coils.

A. Linear k-space interpolation in GRAPPA

The most clinically used k-space reconstruction method for parallel imaging is GRAPPA, 

which uses linear shift-invariant convolutional kernels to interpolate missing k-space lines 

using uniformly-spaced acquired k-space lines [3]. For the jth coil k-space data, kj, we have

κj kx, ky − mΔky = ∑
c = 1

nc
∑

bx = − Bx

Bx
∑

by = − By

By
gj, m bx, by, c κc

kx − bxΔkx, ky − RbyΔky ,
(9)

where R is the acceleration rate of the uniformly under-samped acquisition; m ∈ {1, …, R − 

1}; gj,m(bx, by, c) are the linear convolutional kernels for estimating the mth spacing location 

in the jth coil; nc is the number of coils; and Bx, By are parameters determined from the 

convolutional kernel size. A high-level overview of such interpolation is shown in the 

reconstruction in k-space section of Figure 1.
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Similar to the coil sensitivity estimation in SENSE-type reconstruction, the convolutional 

kernels gj,m(bx, by, c) are estimated for each subject, from either a separate reference scan or 

from a fully-sampled block of data at the center of k-space, called autocalibrating signal 

(ACS) [3]. A sliding window approach is used in this calibration region to identify the fully-

sampled acquisition locations specified by the kernel size and the corresponding missing 

entries. The former, taken across all coils, is used as rows of a calibration matrix, A; while 

the latter, for a specific coil, yields a single entry in the target vector, b. Thus for each coil j 
and missing location m ∈ {1, …, R − 1}, a set of linear equations are formed, from which 

the vectorized kernel weights gj,m(bx, by, c), denoted gj,m, are estimated via least squares, as 

gj, m ∈ argming b − Ag 2
2. GRAPPA has shown to have several favorable properties compared 

to SENSE, including lower g-factors, sometimes even less than unity in parts of the image, 

and more smoothly varying g-factor maps [17].

B. Advances in k-space interpolation methods

Though GRAPPA is widely used in clinical practice, it is a linear method that suffers from 

noise amplification based on the coil geometry and acceleration rate [2]. Therefore, several 

strategies have been proposed in the literature to reduce the noise in reconstruction.

Iterative self-consistent parallel imaging reconstruction (SPIRiT) is a strategy for enforcing 

self-consistency among the k-space data in multiple receiver coils by exploiting correlations 

between neighboring k-space points [9]. Similar to GRAPPA, SPIRiT also estimates a linear 

shift-invariant convolutional kernel from ACS data. In GRAPPA, this convolutional kernel 

used information from acquired lines in a neighborhood to estimate a missing k-space point. 

In SPIRiT, the kernel includes contributions from all points, both acquired and missing, 

across all coils for a neighborhood around a given k-space point. The self-consistency idea 

suggests that the full k-space data should remain unchanged under this convolution 

operation. The SPIRiT objective function also includes a term that enforces consistency with 

the acquired data, where the undersampling can be performed with arbitrary patterns, 

including random patterns that are typically employed in compressed sensing [7, 8]. 

Additionally, this formulation allows for incorporation of regularizers, for instance based on 

transform-domain sparsity, in the objective function to reduce reconstruction noise via non-

linear processing in a method called l1-SPIRiT [9]. Furthermore, SPIRiT has facilitated the 

connection between coil sensitivities used in image-domain parallel imaging methods and 

the convolutional kernels used in k-space methods via a subspace analysis in a method 

called ESPIRiT [5]. It was shown that the k-space based l1-SPIRiT and coil sensitivity-

based l1-ESPIRiT perform similarly.

An alternative line of work utilizes non-linear k-space interpolation for estimating missing 

k-space points for uniformly undersampled parallel imaging acquisitions [18]. It was noted 

that during GRAPPA calibration, both the regressand and the regressor have errors in them 

due to measurement noise in the acquisition of calibration data, which leads to a non-linear 

relationship in the estimation. Thus, the reconstruction method, called non-linear GRAPPA 

(NL-GRAPPA), uses a kernel approach to map the data to a higher-dimensional feature 

space, where linear interpolation is performed, which also corresponds to a non-linear 
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interpolation in the original data space. The interpolation function is estimated from the ACS 

data, although this approach typically required more ACS data than GRAPPA [18]. This 

method was shown to reduce reconstruction noise compared to GRAPPA. Note that NL-

GRAPPA, through its use of the kernel approach, is a type of machine learning approach, 

though the non-linear kernel functions were empirically fixed a-priori and not learned from 

data. In another line of work, GRAPPA regularization during calibration was explored using 

a sparsity-promoting [19] approach. These approaches use regularization in calibration 

followed by a one-step reconstruction. However, we note that this way is different than than 

the regularization in l1-SPIRiT, which uses the regularization during reconstruction in an 

iterative manner.

C. Low-rank matrix completion for k-space reconstruction

While k-space interpolation methods remain the prevalent method for k-space parallel 

imaging reconstruction, there has been recent efforts on recasting this type of reconstruction 

as a matrix completion problem. Simultaneous autocalibrating and k-space estimation 

(SAKE) is an early work in this direction, where local neighborhoods in k-space across all 

coils are restructured into a matrix with block Hankel form [20]. Then low-rank matrix 

completion is performed on this matrix, subject to consistency with acquired data, enabling 

k-space parallel imaging reconstruction without additional calibration data acquisition. Low-

rank matrix modeling of local k-space neighborhoods (LORAKS) is another method 

exploiting similar ideas, where the motivation is based on utilizing finite image support and 

image phase constraints instead of correlations across multiple coils, and which was also 

extended to parallel imaging to further include the similarities between image supports and 

phase constraints across coils [21]. A further generalization to LORAKS is annihilating 

filter-based low rank Hankel matrix approach (ALOHA), which extends the finite support 

constraint to transform domains [22]. By relating transform domain sparsity to the existence 

of annihilating filters in a weighted k-space, where the weighting is determined by the 

choice of transform domain, ALOHA recasts the reconstruction problem as the low-rank 

recovery of the associated Hankel matrix.

IV. Machine learning methods for parallel imaging in image space

The use of machine learning for image-based parallel MR imaging evolves naturally from 

Equation (5) based on the following key insights. First, in classic compressed sensing, Ψ are 

a general regularizers like the image gradient or wavelet transforms, which were not 

designed specifically with undersampled parallel MRI acquisitions in mind. These 

regularizers can be generalized to models that have a higher computational complexity. Ψ 
can be formulated as a convolutional neural network (CNN), where the model parameters 

can be learned from training data inspired by the concepts of deep learning [4], as illustrated 

in Figure 2. This was already demonstrated earlier in the context of computer vision with a 

non-convex regularizer of the following form

Ψ(u) = ∑
i = 1

Nk
ρi Kiu , 1 . (10)
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The regularizer in Equation (10) consists of Nk terms of non-linear potential functions ρi, 

and Ki are convolution operators. 1 indicates a vector of ones. The parameters of the 

convolution operators and the parametrization of the non-linear potential functions form the 

free parameters of the model, which are learned from training data.

The second insight is that the iterative algorithm that is used to solve Equation (5) naturally 

maps to the structure of a neural network, where every layer in the network represents an 

iteration step of a classic algorithm. This follows naturally from gradient descent for the 

least squares problem in Equation (4) that leads to the iterative Landweber method. After 

choosing an initial u0, the iteration scheme is given by Equation (11)

us = us − 1 − αsE * Eus − 1 − f , s > 0. (11)

E* is the adjoint of the encoding operator and αs is the step size of iteration s. Using this 

iteration scheme to solve the reconstruction problem in Equation (5) with the regularizer 

defined in Equation (10) leads to the update scheme defined in Equation (12), which forms 

the basis of recently proposed image space based machine learning methods for parallel 

MRI

us = us − 1 − αs ∑
i = 1

Nk
Ki

⊤ρi′ Kius − 1 + λsE* Eus − 1 − f . (12)

This update scheme can then be represented as a neural network with S stages corresponding 

to S iteration steps in Equation (12). ρi′ are the first derivatives of the nonlinear potential 

functions ρi, which are represented as activation functions in the neural network. The 

transposed convolution operations Ki
⊤ correspond to convolutions with filter kernels rotated 

by 180 degrees. The idea of the variational network [15] follows the structure of classic 

variational methods and gradient-based optimization, and the network architecture is 

designed to mimic a classic iterative image reconstruction. Since this convolutional steps in 

this architecture are shallow, the network has a small receptive field (11 × 11 convolution 

kernels were used in [15, 23]) and the network cannot capture global image information. The 

regularizer can be modified by including elements like pooling layers, upconvolutions and 

skip-connections, following the popular U-Net model [24]. This extends the computational 

capacity of the regularizer and given sufficient training data samples, will generally improve 

the performance of the model. However, it comes at the cost of loosing the direct connection 

to gradient based optimization, which makes the approach less interpretable. It can also lead 

to overfitting in situations where only a small set of training data is available. The method 

from Aggarwal et al. [25] is an example for such an approach. It follows a similar design 

concept as the VN, but uses a deeper and more complex regularizer. In order to limit the 

total number of model parameters, the same set of weights is used for all stages of the 

network. The other major difference is that in contrast to the gradient in the VN (see 

Equation (11)), it realizes the data term via a proximal mapping that is implemented as an 

unrolled conjugate-gradient scheme.
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An experiment that compares the properties of image space based machine learning for 

parallel MRI to CG-SENSE and constrained reconstructions from the previous sections is 

shown in Figure 3. The architecture and training of the VN exactly follows the description in 

[15] and the model consists of 131,050 model parameters that are different for all 10 stages 

in the network architecture. The MoDL formulation and training is a modification of the 

approach in [25]. The same learned deep learning regularizer was repeated across all 10 

stages. In contrast to the approach described in the paper, the regularizer was modified to a 

U-Net [24] with a total of 694,021 model parameters. The publicly available multi-channel 

knee data that was described in Section II was used to train the networks. The source for the 

approaches that are used in these experiments is available online2,3,4. The figure shows a 

single slice of a test case that was not used during training. The normalized root mean sum 

of squares error (NRMSE) and structural similarity index (SSIM) to the fully sampled 

reference is shown next to each reconstruction. The experiments illustrates the improved 

performance as the complexity of the regularizer model is increased. Equidistant Cartesian 

sampling from traditional parallel imaging was used in all experiments because this type of 

sampling is predominantly used in clinical practice. For combined parallel imaging and 

compressed sensing, pseudo-random sampling is generally recommended to improve 

performance in the literature [7]. An analysis of the influence of the sampling scheme is not 

included here due to space constraints. Such a study was performed in [15] and showed that 

the improvement in image quality with the learning approach was independent of the used 

sampling scheme. To determine the model parameters of the network that will perform the 

parallel imaging reconstruction task, an optimization problem needs to be defined that 

minimizes a training objective. In general, this can be formulated in a supervised or 

unsupervised manner. Supervised approaches are predominantly used while unsupervised 

approaches are still a topic of ongoing research. Therefore, we will focus on supervised 

approaches for the remainder of this section. We define the number of stages, corresponding 

to gradient steps in the network, as S. d is the current training image out of the complete set 

of training data D. The variable Θ contains all trainable parameters of the reconstruction 

model. The training objective then takes the following form

L(Θ) = min
Θ

1
2D ∑

d = 1

D
ud

S(Θ) − ud
ref

2
2 . (13)

As it is common in deep learning, Equation (13) is a non-convex optimization problem that 

is solved with standard numerical optimizers like stochastic gradient descent. This requires 

the computation of the gradient of the training objective with respect to the model 

parameters Θ. This gradient can be computed via back-propagation

∂L(Θ)
∂Θs = ∂us + 1

∂Θs ⋅ ∂us + 2

∂us + 1… ⋅ ∂uS

∂uS − 1 ⋅ ∂L(Θ)
∂uS . (14)

2https://cai2r.net/resources/software
3https://github.com/VLOGroup/mri-variationalnetwork
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The basis of supervised approaches is the availability of a target reference reconstruction 

uref. This requires the availability of a fully-sampled set of raw phased array coil k-space 

data. This data is then retrospectively under-sampled by removing k-space data points as 

defined by the sampling trajectory in the forward operator E and serves as the input of the 

reconstruction network. For training example d, the current output of the network ud
D(Θ) is 

then compared to the reference ud
ref  via an error metric. The choice of this error metric has 

an influence on the properties of the trained network, which is a topic of currently ongoing 

work. A popular choice is the mean squared error (MSE), which was also used in Equation 

(13). Other choices are the l1 norm of the difference and the SSIM.

The focus of this section was machine learning based extensions of combined parallel 

imaging and compressed sensing, where the machine learning was mainly used to learn a 

model that serves as a more complex regularizer. Another set of developments in image 

space based parallel imaging is focused on the improvement of the estimation of the coil 

sensitivity maps via joint estimation of image content and coil sensitivities. The first in a 

recent set developments in that direction was proposed in [26]. This approach first performs 

the IDFT of the undersampled multi-channel k-space (see the illustration in the left column 

of Figure 1). The neural network is then trained to learn the mapping of the aliased 

individual coil images to the combined un-aliased image. The network thus learns how to 

use the sensitivity information to perform the de-aliasing without using explicit coil 

sensitivity maps. The authors used a classic fully connected multi-layer-perceptron for this 

task. The use of fully connected networks is usually challenging for clinically relevant image 

sizes due to memory requirements, for this particular application it was possible by 

performing de-aliasing separately for each 1D line in image space in the phase encoding 

direction. A more general version of this approach was recently proposed in [27]. The 

authors use a CNN, which eliminates the memory issue and allows them to use the proposed 

approach for 3D time-of-flight angiography.

V. Machine learning methods for parallel imaging in k-space

There has been a recent interest in using neural network to improve the k-space interpolation 

techniques using non-linear approaches in a data-driven manner. These newer approaches 

can be divided into two groups based on how the interpolation functions are trained. The 

first group uses scan-specific ACS lines to train neural networks for interpolation, similar to 

existing interpolation approaches, such as GRAPPA or non-linear GRAPPA. The second 

group uses training databases, similar to the machine learning methods discussed in image 

domain parallel imaging.

Robust artificial-neural-networks for k-space interpolation (RAKI) is a scan-specific 

machine learning approach for improved k-space interpolation [28]. This approach trains 

CNNs on ACS data, and uses these for interpolating missing k-space points from acquired 

ones. The interpolation function can be represented by
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κj kx, ky − mΔky = fj, m κc kx − bxΔx,
ky − RbyΔy bx ∈ −Bx, Bx , by ∈ −By, By , c ∈ 1, nc , (15)

where fj,m is the interpolation rule implemented via a multi-layer CNN for outputting the k-

space of the mth set of uniformly spaced missing lines in the jth coil, R is the undersampling 

rate, Bx, By are parameters specified by the receptive field of the CNN, and nc is the number 

of coils. Thus, the premise of RAKI is similar to GRAPPA, while the interpolation function 

is implemented using CNNs, whose parameters are learned from ACS data with an MSE 

loss function. The scan-specific nature of this method is attractive since it requires no 

training databases, and can be applied to scenarios where a fully-sampled gold reference 

cannot be acquired, for instance in perfusion or real-time cardiac MRI, or high-resolution 

brain imaging. Example RAKI, NL-GRAPPA and GRAPPA reconstructions for such high-

resolution brain imaging datasets, which were acquired with prospective undersampling are 

shown in Figure 4. These data were acquired on a 7T system (Siemens Magnex Scientific) 

with 0.6 mm isotropic resolution. R = 5, 6 data were acquired with two averages for 

improved SNR to facilitate visualization of any residual artifacts. Other imaging parameters 

are available in [28]. For these datasets, RAKI leads to a reduction in noise amplification 

compared to GRAPPA. Note the noise reduction here is based on exploiting properties of the 

coil geometry, and not on assumptions about image structure, as in traditional regularized 

inverse problem approaches, as in Section II-B. However, the scan-specificity also comes 

with downsides, such as the computational burden of training for each scan, as well as the 

requirement for typically more calibration data. In this dataset, RAKI and NL-GRAPPA 

have similar performance for R = 4, 5. At R = 6, RAKI preserves sharper details compared 

to NL-GRAPPA, although the differences are subtle. In Figure 5, reconstructions of the knee 

dataset from Figure 3 are shown, where all methods, which rely on subject-specific 

calibration data, exhibit a degree of artifacts, due to the small size of the ACS region, while 

RAKI has the highest SSIM and lowest NRMSE.

While originally designed for uniform undersampling patterns, this method has been 

extended to arbitrary sampling, building on the self-consistency approach of SPIRiT [29]. 

Additionally, recent work has also reformulated this interpolation procedure as a residual 

CNN, with residual defined based on a GRAPPA interpolation kernel [30]. Thus, in this 

approach called residual RAKI (rRAKI), the CNN effectively learns to remove the noise 

amplification and artifacts associated with GRAPPA, giving a physical interpretation to the 

CNN output, which is similar to the use of residual networks in image denoising. An 

example application of the rRAKI approach in simultaneous multi-slice (SMS) imaging [31] 

with an SMS factor of 16, i.e. a 16-fold acceleration in coverage is shown in Figure 6, 

showing improvement over both GRAPPA and NL-GRAPPA in reducing residual aliasing 

and noise amplification. We note that for all experiments shown in this section, the same 

number of ACS lines were used for all methods. Thus, the differences between methods are 

not due to the size of the calibration data.

A different line of work, called DeepSPIRiT, explores using CNNs trained on large 

databases for k-space interpolation with a SPIRiT-type approach [32]. Since sensitivity 

profiles and number of coils vary for different anatomies and hardware configurations, k-
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space data in the database were normalized using coil compression to yield the same number 

of channels [33]. Coil compression methods effectively capture most of the energy across 

coils in a few virtual channels, with the first virtual channel containing most of the energy, 

the second being the second most dominant, and so on, in a manner reminiscent of principal 

component analysis. Following this normalization of the k-space database, CNNs are trained 

for interpolating different regions of k-space. The method was shown to remove aliasing 

artifacts, though difficulty with high-resolution content was noted. Since DeepSPIRiT trains 

interpolation kernels on a database, it does not require calibration data for a given scan, 

potentially reducing acquisition time further.

Neural networks have also been applied to the Hankel matrix based approaches in k-space 

[34]. Specifically, the completion of the weighted k-space in ALOHA method has been 

replaced with a CNN, trained with an MSE loss function. The method was shown to not only 

improve the computational time, but also the reconstruction quality compared to original 

ALOHA by exploiting structures beyond low-rankness of Hankel matrices. In another line of 

work, neural networks have been applied to a Hankel matrix based approach that models 

signals as piecewise smooth [35]. These methods are described in more detail in another 

article in this issue [36].

VI. Discussion

A. Issues and open problems

Several advantages of neural network based machine learning approaches over classic 

constrained reconstruction using predefined regularizers have been proposed in the 

literature. First, the regularizer is tailored to a specific image reconstruction task, which 

improves the removal of residual artifacts. This becomes particularly relevant in situations 

where the used sampling trajectory does not fulfill the incoherence requirements of 

compressed sensing, which is often the case for clinical parallel imaging protocols. Second, 

machine learning approaches decouple the compute-heavy training step from a lean 

inference step. In medical image reconstruction, it is critical to have images of diagnostic 

quality available immediately after the scan so that technologists and radiologists can decide 

immediately whether a certain sequence needs to be repeated or acquisition parameters need 

to be changed. In contrast, prolonged training procedures that can be done on specialized 

computing hardware, are generally acceptable. For example, the training of the VN 

reconstruction in the experiment in Figure 3 took 40 hours for 150 epochs with 200 slices of 

training data on a single NVIDIA M40 GPU with 12GB of memory. Training data, model 

and training parameters exactly follow the training from [23]. Reconstruction of one slice 

then took 200ms, which is compatible with current image reconstruction times of algorithms 

like SENSE and GRAPPA on clinical scanners, and therefore compatible with clinical 

workflow. In comparison, the computation times were 10ms for zero filling, 150ms for CG-

SENSE and 10000ms for the PI-CS TGV constrained reconstructions on the same GPU 

hardware.

The focus in Section IV and Section V were on methods that were developed specifically in 

the context of parallel imaging. Some architectures for image domain machine learning have 

been designed specifically towards a target application, for example dynamic imaging [37]. 
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Another approach was recently developed that combines k-space and image space CNN data 

processing [38]. In their current form, these methods were not yet demonstrated in the 

context of multi-coil data. The approach recently proposed by Zhu et al. learns the complete 

mapping from k-space raw data to the reconstructed image [39]. The proposed advantage is 

that since no information about the acquisition is included in the forward operator E, it is 

more robust against systematic calibration errors during the acquisition. This comes at the 

price of a significantly higher number of model parameters. The corresponding memory 

requirements make it challenging to use this model for matrix sizes that are currently used in 

clinical applications. A systematic comparison of these recent approaches from the literature 

is still an open question in the field. However, a fair comparison is challenging because their 

performance also depends on the quality the training data. Most approaches are also 

designed with a particular set of target applications in mind, and different research groups 

usually build their own data sets as part of their developments. Thus, it can be a non-trivial 

task to modify a particular approach so that the performance is optimal for a new type of 

data. For example, in approaches that are designed either for dynamic or static imaging, the 

regularizer models are tailored to the specific properties of these data. We also note that 

there are fewer works in k-space machine learning methods for MRI reconstruction. This 

may be due to the different nature of k-space signal that usually has very different intensity 

characteristics in the center versus the outer k-space, which makes it difficult to generalize 

the plethora of techniques developed in computer vision and image processing that exploit 

properties of natural images.

Machine learning reconstruction approaches also come with a number of drawbacks when 

compared to classic constrained parallel imaging. First, they require the availability of a 

curated training data set that is representative so that the trained model generalizes to new 

unseen test data. While recent approaches from the literature [15, 25, 37] have either been 

trained with hundreds of examples rather than millions of examples as it is common in deep 

learning for computer vision, or trained on synthetic non-medical data that is publicly 

available from existing databases. However, this is still a challenge that will potentially limit 

the use of machine learning to certain applications. Several applications in imaging of 

moving organs, such as the heart, or in imaging of the brain connectivity, such as diffusion 

MRI, cannot be acquired with fully-sampled data due to constraints on spatio-temporal 

resolutions. This hinders the use of fully-sampled training labels for such datasets, 

highlighting applications for scan-specific approaches or unsupervised training strategies.

These reconstruction methods also require the availability of computing resources during the 

training stage. This is a less critical issue due to the increased availability and reduced prices 

of GPUs. The experiments in this paper were made with computing resources that are 

available for less than 10,000 USD, which are usually available in academic institutions. In 

addition, the availability of on-demand cloud-based machine learning solutions is constantly 

increasing.

A more severe issue is that in contrast to conventional parallel imaging and compressed 

sensing, machine learning models are mostly non-convex. Their properties, especially 

regarding their failure modes and generalization potential for daily clinical use, are 

understood less well than conventional iterative approaches based on convex optimization. 
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For example, it was recently shown that while reconstructions generalize well with respect 

to changes in image contrast between training and test data, they are susceptible towards 

systematic deviations in SNR [23]. It is also still an open question how specific trained 

models have to be. Is it sufficient to train a single model for all types of MR exams, or are 

separate models required for scans of different anatomical areas, pulse sequences, 

acquisition trajectories and acceleration factors as well as scanner manufacturers, field 

strengths and receive coils? While pre-training a large number of separate models for 

different exams would be feasible in clinical practice, if certain models do not generalize 

with respect to scan parameter settings that are usually tailored to the specific anatomy of an 

individual patient by the MR technologist, this will severely impact their translational 

potential and ultimately their clinical use. More generally speaking, an improved 

understanding of neural network training and architecture design to optimization theory is a 

very active research topic in the field of machine learning. We expect that future research in 

similar directions will further bridge the gap between current experimental results and the 

underlying theory and lead to a better understanding of generalization properties, failure 

modes in worst case scenarios and architecture design for specific types of problems.

B. Availability of training databases and community challenges

As mentioned in the previous section, one open issue in the field of machine learning 

reconstruction for parallel imaging is the lack of publicly available databases of multi-

channel raw k-space data. This restricts the number of researchers who can work in this field 

to those who are based at large academic medical centers where this data is available, and 

for the most part excludes the core machine learning community that has the necessary 

theoretical and algorithmic background to advance the field. In addition, since the used 

training data becomes an essential part of the performance of a certain model, it is currently 

almost impossible to compare new approaches that are proposed in the literature with each 

other if the training data is not shared when publishing the manuscript. While the 

momentum in initiatives for public releases of raw k-space data is growing [40], the number 

of available data sets is still on the order of hundreds and limited to very specific types of 

exams. Examples of publicly available rawdata sets are mridata.org5 and the fastMRI 

dataset6.

VII. Conclusion

Machine learning methods have recently been proposed to improve the reconstruction 

quality in parallel imaging MRI. These techniques include both image domain approaches 

for better image regularization and k-space approaches for better k-space completion. While 

the field is still in its development, there are many open problems and high-impact 

applications, which are likely to be of interest to the broader signal processing community.
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Fig. 1: 
In k-space based parallel imaging methods, missing data is recovered first in k-space, 

followed by an inverse discrete Fourier transform (IDFT) and combination of the individual 

coil elements. In image space based parallel imaging, the IDFT is performed as the first step, 

followed by coil sensitivity based removal of the aliasing artifacts from the reconstructed 

image by solving an inverse problem.
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Fig. 2: 
Illustration of machine learning-based image reconstruction. The network architecture 

consists of S stages that perform the equivalent of gradient descent steps in a classic iterative 

algorithm. Each stage consists of a regularizer and a data consistency layer. Training the 

network parameters Θ is performed by retrospectively undersampling fully sampled multi-

coil raw k-space data and comparing the output of the network ud
S(Θ) to a target reference 

reconstruction ud
ref  obtained from the fully sampled data for the current training example d.
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Fig. 3: 
Comparison of image-domain based parallel imaging reconstructions of a retrospectively 

accelerated coronal knee acquisition. The used sampling pattern, zero-filling, CG-SENSE, 

combined parallel imaging and compressed sensing with a TGV-constraint, and learned 

reconstructions using the Variational Network and MoDL architectures are shown, along 

with their NRMSE and SSIM values to the fully sampled reference. See text in the 

respective sections for details on the individual experiments.
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Fig. 4: 
A slice from a high-resolution (0.6 mm isotropic) 7T brain acquisition, where all 

acquisitions were performed with prospective acceleration. It is difficult to acquire fully-

sampled reference datasets for training for such acquisitions, thus two scan-specific k-space 

methods were compared. The CNN-based RAKI method visibly reduced noise amplification 

compared to the linear GRAPPA reconstruction. NL-GRAPPA and RAKI have similar noise 

properties, while RAKI produces a slightly sharper image at R = 6.
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Fig. 5: 
Comparison of k-space parallel imaging reconstructions of a retrospectively accelerated 

coronal knee acquisition, as in Figure 3. Due to the small size of the ACS data relative to the 

acceleration rate, the methods, none of which utilizes training databases, exhibit artifacts. 

GRAPPA has residual aliasing, whereas SPIRiT shows noise amplification. These are 

reduced in RAKI, though the residual artifacts remain. Respective NRMSE and SSIM values 

reflect these visual assessment.
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Fig. 6: 
Reconstruction results of simultaneous multi-slice imaging of 16 slices in fMRI (i.e. 16-fold 

acceleration in coverage), where a sample of 3 slices are shown. GRAPPA method exhibits 

noise amplification at this high acceleration rate. NL-GRAPPA reduces noise amplification 

but suffers from residual aliasing and leakage. The rRAKI method, which consists of a linear 

convolutional component G, in parallel with a non-linear CNN component F that learns the 

artifacts arising from G, exhibits exhibits reduced noise and reduced aliasing. Due to 

imperfections in the ACS data for this application, the residual component includes both 

noise amplification and residual artifacts.
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