MRI is a valuable clinical and research tool for patients undergoing deep brain stimulation (DBS). However, risks associated with imaging DBS devices have led to stringent regulations, limiting the clinical and research utility of MRI in these patients. The main risks in patients with DBS devices undergoing MRI are heating at the electrode tips, induced currents, implantable pulse generator dysfunction, and mechanical forces. Phantom model studies indicate that electrode tip heating remains the most serious risk for modern DBS devices. The absence of adverse events in patients imaged under DBS vendor guidelines for MRI demonstrates the general safety of MRI for patients with DBS devices. Moreover, recent work indicates that—given adequate safety data—patients may be imaged outside these guidelines. At present, investigators are primarily focused on improving DBS device and MRI safety through the development of tools, including safety simulation models. Existing guidelines provide a standardized framework for performing safe MRI in patients with DBS devices. It also highlights the possibility of expanding MRI as a tool for research and clinical care in these patients going forward.

© RSNA, 2020

Online supplemental material is available for this article.

Deep brain stimulation (DBS) modulates aberrant neural circuits implicated in a broad range of neurologic disorders (1). Most commonly used in movement disorders such as Parkinson disease, dystonia, and tremor, DBS is also investigated for use in psychiatric and cognitive disorders such as depression and Alzheimer disease (2). Estimates show 150,000 patients have undergone surgical procedures for DBS worldwide (3). Approximately 70% of these patients will require an MRI within 10 years of implantation (4). However, past adverse MRI-related incidents led to strict guidelines restricting access to imaging for patients with DBS devices (5). In addition to constraining the diagnostic utility of MRI in this population, these regulations substantially impede MRI-based research.

The DBS literature reports five cases of injury involving radiofrequency (RF) currents—three MRI-related (Table 1), which prompted a 2005 U.S. Food and Drug Administration warning regarding patients with DBS undergoing MRI (6). To prevent additional injuries, DBS hardware vendors (ie, Medtronic, Boston Scientific, and Abbott) established MRI guidelines for imaging patients with DBS devices (5,7). These vendors approved and produced MRI-conditional DBS devices. Vendor guidelines restrict MRI coil types and gradient settings, as well as scan only at specific magnetic field strengths (ie, 1.5 T).
Boutet et al.

Abbreviations

\(B_{1+RMS} \) = root-mean-square value of the MRI effective component of the RF magnetic (B\(_1\)) field, DBS = deep brain stimulation, IPG = implantable pulse generator, RF = radiofrequency, SAR = specific absorption rate

Summary

Performance of MRI with deep brain stimulation devices carries risks, but developed tools aim to improve safety and expand the role of MRI in clinical care and research for these patients.

Essentials

- The most studied risks of performing MRI with deep brain stimulation (DBS) devices include device heating, induced currents, implantable pulse generator dysfunction, and magnetic field–induced device movement.
- Device heating and resultant neuronal damage remains the most serious risk for performing MRI with modern DBS devices.
- MRI performed under DBS vendor guidelines for MRI report no adverse events.
- Following local safety testing to characterize the risks, acquiring optimal functional neuroimaging data safely outside prescribed DBS vendor guidelines for MRI could provide insight into pathologic brain states, as well as the structural and functional changes associated with active DBS therapy.
- At present, tools to improve DBS safety including safety simulation models aimed to expand clinical and research use of MRI in these patients.

and specific heating-related thresholds (eg, specific absorption rate [SAR] ≤0.1 W/kg and root-mean-square value of the MRI effective component of the RF magnetic [B\(_1\)] field \([B_{1+RMS}] \leq 2 \mu T\) (8,9)). These guidelines mainly aim to prevent MRI-induced device heating, which could lead to substantial brain damage (6).

Recently, some constraints limiting brain MRI of patients with DBS devices have been relaxed, with certain newer DBS device models deemed full-body eligible (8–10).

Since the first reported use of MRI in patients with DBS devices, phantom models have been the most common tool to improve our understanding of DBS device and MRI safety (Fig 1). Phantom models allow investigators to simulate, albeit with limitations, how DBS devices behave during MRI scanning under safe and controlled conditions (5). However, a growing number of investigators now embrace newer techniques such as computer simulation to improve safety.

Enhanced knowledge of MRI safety in patients with DBS devices could lead to more proportionate safety guidelines, thereby improving patient care. Tagliati et al (11) found that nearly half the centers they surveyed were not performing brain MRI in patients with DBS devices. Moreover, only 13% of centers reported performing MRI of other body parts. These numbers are particularly worrisome given that MRI has become the reference standard for imaging many neurologic pathologic conditions (including surgical emergencies such as suspected spinal cord or cauda equina compression), as well as a range of musculoskeletal and abdominal pathologic conditions. In fact, 66%–75% of patients diagnosed with Parkinson disease, essential tremor, or dystonia will need an MRI in the 10 years following an operation for DBS (4). Most of these MRI examinations (62%) would be body MRI unrelated to the primary neurologic or neuropsychiatric diagnosis. Furthermore, higher field strength (eg, 3.0 T and 7.0 T) and less common sequences (eg, functional MRI and diffusion-weighted imaging) continue to show potential for clinical and research use. Investigation of medical implant safety under these conditions generates considerable interest (12–15). For example, functional MRI allows visualization of brain activity changes as a result of stimulation, revealing clinically efficacious networks in Parkinson disease (16,17) and obsessive compulsive disorder (18). Also, functional MRI demonstrates the motor and nonmotor cortical segregation of the subthalamic nucleus, which is a structure targeted for Parkinson disease (19). Similarly, diffusion-weighted imaging commonly assesses stroke, assists neurosurgical planning, and provides disease markers (20,21).

However, DBS vendor guidelines remain highly restrictive and often prohibit using both routine clinical (eg, DBS electrode localization [22]) and research (eg, arterial spin-labeling [12]) protocols (23,24).

MRI-related Risks of DBS Devices

Standards related to MRI safety testing of neurostimulators are based on the American Society for Testing and Materials International (25–27), International Organization for Standardization Technical Standard or ISO/TS 10974 (28), and other documents (29). A detailed description of these constantly evolving standards is beyond the scope of this review. Below is a summation of the most common MRI risks studied in the literature (26). However, other potential risks remain, such as gradient field–induced vibrations.

Heating

Heating of DBS devices and the potential for subsequent brain damage constitutes the main risk when performing MRI in patients with neurostimulators (30–32). RF pulses applied during MRI elicit a detectable signal in bodily tissue and thereby acquire images of the target structures. These pulses may induce high currents in DBS electrodes and extension wires (33,34). Specifically, provided a conductive system (the extension wire and lead in the case of DBS) of appropriate length, the rapidly changing magnetic fields during RF excitation induce a current (ie, the antenna effect) (35). Then, the induced current dissipates as heat at the electrode tip. This is the location where the electrical current flux density is highest (and with highest resistance) (36). Because permanent brain damage can occur at temperatures exceeding 45°C (113°F) (ie, 7°C–8°C [45°C–46°F] in excess of normal body temperature) (37), temperature increases of less than 2°C (36°F) are felt to be acceptable and within a sufficient margin of safety (12,38–40). In addition to improving patient safety, minimizing MRI-induced heating could also improve data quality. For example, because blood oxygen level–dependent signal may be altered by a change in temperature, the minimization of DBS device heating may improve functional MRI data quality (39,41).
Intrinsic factors, such as the type of neurostimulator, may also influence temperature rise. Different brands and models of DBS device components (ie, electrodes, extension wire, and implantable pulse generator [IPG]) may exhibit different temperature increases based on their electrical characteristics (32). The geometry of the implanted device within the patient can also contribute to heating (12,33). The configuration of the implant is often institution-specific and varies in terms of electrode quantity, placement of excess extension wires, and IPG positioning. Finally, patients' position in reference to the MRI bore and coils may further influence heating (39).

Measures of Heating

MRI guidelines specify heating-related thresholds (ie, SAR and \(B_{1,RMS} \)) to prevent brain injury. Historically, SAR, a dosimetric index characterizing the thermogenic aspects of an electromagnetic field, commonly estimates energy deposition during MRI (7). However, SAR has inherent limitations, namely that its calculations vary by MRI system manufacturer and is derived by using various evolving assumptions and models of the human body by manufacturers (7,44,45). These limitations might explain why \(B_{1,RMS} \)—a measure of the average magnetic field generated by the RF transmit coil—may provide an alternative dosimetric index to SAR (42). Unlike SAR, \(B_{1,RMS} \) is independent of the patient’s weight, vendor-specific assumptions, and MRI hardware and software. It is a requirement of the International

Table 1: Injuries in Patients with DBS Devices

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>DBS Placement</th>
<th>IPG</th>
<th>Modality</th>
<th>Outcome</th>
<th>Case Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutt et al, 2001 (106); Ruggera et al, 2003 (107)</td>
<td>Bilateral STN</td>
<td>Bilateral (placement not specified)</td>
<td>Diathermy</td>
<td>Death</td>
<td>Use of diathermy during a dental procedure caused peri-electrode edema and neurologic changes (decerebrate posturing; occasional myoclonic jerks; small, questionably reactive pupils; weak corneal responses; and bilateral Babinski signs) and eventually death</td>
</tr>
<tr>
<td>U.S. FDA report, 2001 (108)</td>
<td>Bilateral GPI and STN</td>
<td>Not specified</td>
<td>Diathermy</td>
<td>Permanent</td>
<td>Use of spinal diathermy caused peri-electrode edema (and possible hemorrhage) and permanent neurologic changes (aphasic with right hemiplegia, eye deviation to the left, and a Babinski sign)</td>
</tr>
<tr>
<td>Spiegel et al, 2003 (109)</td>
<td>Bilateral STN</td>
<td>Externalized</td>
<td>1.0-T brain MRI (four SE sequences; TR, 570 msec; TE, 15 msec)</td>
<td>Temporary</td>
<td>Temporary neurologic changes (continuous dystonic extensions of the left foot and sudden ballistic movements of the left leg with abduction) with full recovery in the following weeks. No acute findings at head CT</td>
</tr>
<tr>
<td>Henderson et al, 2005 (110)</td>
<td>Bilateral STN</td>
<td>Bilateral (subclavicular and abdominal)</td>
<td>1.0-T spine MRI (no sequence details provided)</td>
<td>Permanent</td>
<td>Peri-electrode edema and hemorrhage and permanent neurologic changes (dysarthria, right hemiparesis, and dysconjugate gaze)</td>
</tr>
<tr>
<td>Zrinzo et al, 2011 (111)</td>
<td>Not specified</td>
<td>Externalized</td>
<td>1.5-T brain MRI (T2-weighted FSE; TR, 3000 msec; TE, 95 msec)</td>
<td>Temporary</td>
<td>Temporary neurologic changes (dyskinetic agitation and head movements). No acute findings on MRI localizer</td>
</tr>
</tbody>
</table>

Note.—Short-wave diathermy uses radiofrequency and it has been used to accelerate tissue healing by using local heating in several muscular conditions. DBS = deep brain stimulation, FDA = Food and Drug Administration, FSE = fast spin echo, GPI = globus pallidus internus, IPG = implantable pulse generator, SE = spin echo, STN = subthalamic nucleus, TE = echo time, TR = repetition time.

Figure 1: Graph shows safety studies over time (cumulative number of deep brain stimulation–related MRI safety studies published from 1992 to 2019). These studies were categorized into phantom, animal, and human safety studies, as well as tools and techniques. Note recent sharp increase in number of studies focusing on innovative tools and techniques. FDA = Food and Drug Administration.
Intrinsic Factors
1. DBS device brand and model
2. Configuration (e.g., # leads and IPG, extension wire placement)
3. Geometry (e.g., patient positioning)

Extrinsic Factors
4. MRI hardware (e.g., field strength, brand and model)
5. MRI software (e.g., version)
6. Coil (e.g., head-transmit, body-transmit)
7. Amount of RF used (e.g., SAR, $B_{1+\text{RMS}}$)

Induced Currents
MRI can induce currents in DBS hardware through two processes. First, RF pulses and gradient switchings cause time-varying magnetic fields capable of inducing impulses in the circuit, consisting of the pulse generator, leads, electrodes, and brain matter (35). Second, the antenna effect is also responsible for induced currents in addition to heating (35,36). Because RF currents have a carrier frequency in the megahertz range, they would not normally induce neuronal activity (i.e., action potentials) (39,51). Gradient switching, however, may induce currents at lower frequencies (low kilohertz range) associated with neuronal firing (39). Depending on the position of the electrodes relative to neuroanatomic structures and fiber bundles, these currents could cause patient discomfort (e.g., paresthesias, muscle spasms) or potentially more severe adverse effects such as seizures (52). Unintended stimulation and tissue damage produced by gradient-induced lead voltage, as well as tissue damage due to rectification produced by RF-induced lead voltage, should be monitored as per the standards (25,27,28).

IPG Dysfunction
Magnetic fields produced by MRI hardware could interfere with IPG function (27). Older IPG models (e.g., Itrel II; Medtronic, Minneapolis, Minn) relied on a magnetic reed switch to turn the device on or off. Depending on the patients’ position relative to the MRI magnetic field, these reed switches could theoretically become spontaneously activated during MRI scanning, with the potential to harm patients and damage DBS components or alter settings (53). Whereas the most commonly used newer IPG models may not have magnetic reed switches, device malfunction induced by static magnetic fields, gradients, or RF fields should nonetheless be tested for following imaging as per the standards (25,27,28).
Magnetic Field–induced Device Movement
As modern components of MRI-conditional neurostimulators are nonmagnetic or diamagnetic, strong mechanical forces are not expected (5). Older IPG models (ie, Itrel; Medtronic) contained residual magnetic materials, such as sealing chips, ferrite core antennae, and reed switches (53,54). The magnetic component in newer IPG models should be minimal because leads and extension wires are nonmagnetic (55–57). Because the magnetic force in the MRI isocenter is theoretically minimal (owing to the high homogeneity of the magnetic field), one would expect the mildly magnetic IPG components located at the periphery to be most sensitive to mechanical forces (54).

Phantom Safety Studies
Since 1992, more than 15 studies described the use of phantom models to investigate the safety of DBS during MRI (Table E1 [online]). Device heating and, to a lesser extent, IPG function and device movement were most commonly assessed. Except for one study that examined thoracic area MRI (34), phantom studies have only assessed brain MRI safety. As such, the following section concerns brain MRI.

Per the American Society for Testing and Materials F2182 and ISO/TS 10974 standards (25,28), phantoms, defined as standardized containers filled with a medium that simulates the electrical and thermal properties of the human body (Fig 3), should measure RF-induced heating near the DBS device during MRI. These standards are subject to improvement for better estimate of heating (58). The most commonly used medium in phantom studies has been semisolid gel containing polyacrylic acid. The gelling agent prevents the transportation of phantom material that is locally heated by thermal convection (59). In addition, it simulates the permittivity and conductivity of various tissues in the frequency range of interest (60). The temperature should be recorded at the location suspected to have the highest amount of heating. In the case of a DBS device, this is the most distal uninsulated contact of the stimulating electrode. If substantial heating is detected, then computational modeling may refine the safety testing by simulating conditions in vivo. However, phantom models are limited by their lack of perfusion—thereby failing to replicate heat dissipation and the thermoregulatory effects of blood flow—and their inability to reproduce the thermodynamics of the human brain (6). Nonetheless, these experiments provide invaluable opportunities to explore implant safety outside of DBS vendor guidelines for MRI.

Although DBS devices have evolved, they continue to be implanted in similar configurations (ie, linear conductive wire), meaning that heating due to the antenna effect remains a major concern. Unacceptable temperature rises (ie, >2°C [36°F]) at the electrode tips have been reported in phantom models with pulse sequences using excessive SAR (37,61), with higher magnetic field strength (12,51), and with different DBS device configurations (62). Because of the constantly evolving nature of MRI hardware, DBS devices, and surgical techniques, the data from these studies may not be readily applicable to today’s conditions.

Extrinsic factors related to DBS device heating vary across phantom studies. First, as expected, higher field strengths are generally associated with greater temperature rises. However, the difference in temperature rises between 3.0 T and 1.5 T was less than 1°C (34°F) in recent studies (16,39). Interestingly, variations in MRI hardware and software systems contribute to inconsistencies in temperature rises. Notably, Baker et al (7,44) demonstrated that two different-generation MRI systems from the same manufacturer, using similar coils and RF-deposited energy, nonetheless triggered different temperature changes; they concluded that console-reported SAR in patients with DBS devices is an unreliable predictor of heating. Second, studies examined the relationship between coil type (ie, head-transmit or body-transmit coil) and temperature rise. Strikingly, Rezai et al (33) reported a temperature rise as high as 25.3°C (77.5°F) with a body-transmit coil, compared with a rise of 7.1°C (44.8°F) with a head-transmit coil. These results were not reproduced in several recent studies, which showed a difference of less than 1°C (34°F) between both coils (12,16,39,40). The discrepancy might be explained by the fact that Rezai et al (33) studied sequences that used more RF energy than would be used with clinical sequences. This study design modeled extreme scenarios, whereas the more recent reports investigated clinically applicable sequences. Differences in DBS device models may also contribute to these inconsistencies. Finally, phantom models show considerable variation across studies in terms of shape and filling medium. Specifically, the concentration of polyacrylic acid used to make the semisolid flesh-simulating gel reportedly influences...
device heating (59). To avoid underestimating device heating, investigators used increasingly higher concentrations of polyacrylic acid over the years.

Phantom model studies had inconsistencies in intrinsic factors related to DBS device heating. First, many experiments date back to the early 1990s, testing obsolete DBS models no longer routinely used in clinical practice (33,37,38,44,51,53,59,61–65). Moreover, all but one study (53) exclusively examined Medtronic DBS devices (Table E1 [online]). This limits the applicability of this data to other brands and more recent models because electrical conductivity (and thus heating) properties may vary across DBS devices (5). Second, DBS device configurations may vary in terms of electrode number and IPG, as well as the placement of excess extension wires. Many studies highlight the crucial role of configuration and geometry of devices and their position in the RF electrical fields relative to the coil. For example, phantom model studies commonly report a slightly higher rise in temperature at the left electrode when compared with the right. This might reflect the different position of the left extension wire, which typically connects a left-sided electrode to a right-sided IPG (12,33,51,62). Coiling the excess extension wire exclusively behind the IPG had marked temperature rises as high as 25.3°C (77.5°F); by contrast, partially coiling it at the cranium had maximal rises of only 6.1°C (43°F) (33). Small concentric loops placed on the cranium reduced DBS device heating (66). Nazzaro et al (62) showed that a DBS device configuration with bilateral IPG had higher temperature rise at the electrodes. Finally, short-circuit or open-circuit malfunction created by compromised DBS device integrity (eg, extension breakage) causes sparking (35). DBS vendor guidelines require confirming “normal” DBS device impedances (ie, bipolar current >250 Ω or monopolar current <2000 Ω) (9). Safety data from one group may not apply to different MRI hardware or institutions. Therefore, perform safety testing using MRI hardware and typical DBS configurations on an institution and hardware-specific basis.

Although the use of heating-related thresholds such as SAR and B1+RMS are general predictors of heating, it is unclear to what degree these metrics apply when implants are present. Phantom model studies report a linear relationship between SAR and temperature rise, irrespective of the DBS device and MRI hardware used (7,44). Pulse sequences with higher SAR, such as T2-weighted sequences, tended to cause relatively higher rises in temperature in most studies (12,16,37,38,51). These data suggest a degree of consistency within highly specific environments but confounded by a high degree of variability in induced heat per unit of SAR (Δtemperature rise/SAR) across MRI scanners and software (7,44), and DBS configurations (single compared with bilateral IPG) (62). Therefore, SAR alone cannot estimate absolute temperature rise for different DBS devices and MRI hardware (32). Taking the limitation of measuring implant heating into consideration, SAR less than 1 W/kg during brain MRI has acceptable temperature rises of less than 2°C (36°F) (12,38–40,51,65). Although seldom reported (12,16), a whole-body measure such as B1+RMS likely has similar limitations as SAR. Although supposedly less restrictive (8,9), the presumed advantages of B1+RMS over SAR must be confirmed by additional safety studies.

MRI-induced currents in DBS devices could present additional risks for patients. Phantom studies that investigated IPG output during 1.5-T (39,51,53) or 3.0-T (12) MRI found that gradient switchings can induce up to 1.5 V (39). This value is low when one considers that patients with Parkinson disease or psychiatric disorders commonly receive 3–5 V or 5–7 V, respectively, from their DBS devices (16,67). Low voltages induced by gradient switchings would be unlikely to cause patient discomfort, even when (rarely) superimposed on the IPG pulses. Nevertheless, this mild induced voltage and potential neuronal activity could reduce the sensitivity of an experiment (eg, by using functional MRI to compare “on” vs “off” DBS states). The larger currents induced by RF excitation pulses (up to 7.0 V) (35) should not trigger neuronal activity because their frequency is in the megahertz range (35,39,51).

Prior Medtronic IPG models most commonly reported spontaneous switching between “on” and “off” states and mild movements of the IPG (35,53,65). However, recent studies using Active models (Medtronic) demonstrated stable IPG output with no indication that gross translational or torque force on the IPG occurred (12,16,39). This finding is important for experiments (eg, using functional MRI) that assume the MRI environment does not disrupt IPG output.

Recent phantom model studies using modern DBS devices and MRI hardware led to safe image acquisition in patients with DBS at 3.0-T MRI by using body-transmit coils (12,16,40). Higher field strengths (>1.5 T) combined with a body-transmit coil crucially provide optimal signal-to-noise ratio and minimize image distortion (39). Phantom models also showed that sequences with research applications, such as functional MRI (12,16,35,40,51,62,64) and diffusion-weighted imaging (12), could be used in patients with DBS in specific conditions. However, arterial-spin labeling, which can measure cerebral blood flow, could not be safely acquired in a recent phantom study (12).

Given that DBS devices continue to use similar configurations (ie, linear conductive wire), heating and, to a lesser extent, induced currents remain the major risks. Generally, lower field strength (ie, 1.5 T) and transmit-receive head coils trigger less DBS device heating than do 3.0-T and body-transmit coils. However, recent phantom studies show that this increased heating is much smaller than suggested by older studies. Heating also varies unpredictably across MRI scanners, software, and DBS device configurations. Conversely, mechanical forces and IPG dysfunction appear to be less of a concern with modern DBS device models due to advances in hardware technology. These findings are limited to modern Medtronic devices. Finally, data from most phantom studies do not readily apply to today’s conditions due to constantly evolving MRI hardware, DBS devices, and surgical techniques.

Animal and Human Studies

DBS safety studies in animals provide the opportunity to perform postmortem examinations following MRI scanning to assess for peri-electrode brain damage. Human safety data are also crucial, providing the necessary clinical translation piece after adequate safety data has been gathered by using other methods.
The animal model safety literature has many major limitations. Most notably, no studies have simultaneously investigated both temperature rise and histopathologic changes in peri-electrode brain tissue (Table E2 [online]). Nevertheless, this body of work again demonstrates the importance of DBS device geometry relative to the RF coil. Unconventional device positions, such that DBS leads lie perpendicular to the MRI magnetic field (68) or that the cranial extension loop is placed laterally on the head (69), triggered markedly higher temperature increases. These results highlight the importance of standardized device implantation and patient positioning during MRI.

Human safety studies provide more insights (Table E3 [online]), despite being limited to Medtronic devices. Most of these studies were conducted between 2005 and 2011, coinciding with the Food and Drug Administration warning release and archiving regarding DBS MRI safety (6). The majority performed MRI in patients in accordance with DBS vendor guidelines, presumably with the intent of confirming the safety of said guidelines. Tagliati et al (11) reported no adverse events in more than 3000 patients with DBS scanned at 1.5 T (although one center used 1.0 T). Furthermore, no studies listed in Table E3 (online) reported adverse events. However, some studies used MRI parameters outside of DBS vendor guidelines, using sequences with high SAR (22,70,71), atypical IPG placement (such as in the abdomen) (72), or higher field strength (ie, 3.0 T) (12,16,40,73). Studies performing 3.0-T MRI reported no adverse events in 88 patients (16,40,64,73,74), among which 27 were performed with a body-transmit coil. Furthermore, the extent of the MRI artifact related to the DBS device was also limited on functional MRI sequences (Figs 4, 5) (73). Thus far, most functional MRI studies in patients with DBS have been limited to 1.5 T (19,75–80). The possibility of acquiring data—in particular, functional MRI—with optimal MRI hardware in patients with DBS may not only help to expand clinical MRI applications, but also could

![Figure 4](https://example.com/figure4.png)

Figure 4: Images show example of three-dimensional (3D) spoiled gradient-recalled acquisition in steady state (SPGR) and gradient-recalled echo (GRE)-echo-planar imaging in patient with deep brain stimulation (DBS) device. A, B, Select axial 3D SPGR and, C, D, GRE echo-planar images acquired with 3.0-T MRI in a patient with Parkinson disease with DBS electrodes located bilaterally in subthalamic nucleus. Artifact along distal DBS lead measures 6 mm and 12 mm for, A, 3D SPGR and, C, GRE echo-planar imaging, respectively. Images with red frame are zoomed-in views of A and C. Subgaleal coiled DBS extension wire creates left parietofrontal artifact in B and D. (Reprinted, with permission, from reference 12.)
of medicine, clinicians should always weigh the advantages and disadvantages of a diagnostic test. If the MRI is likely to provide substantial benefits for the patient with DBS, then some degree of risk may be acceptable (81).

Studies reported IPG dysfunction (absent of patient injuries) in older IPG models, most commonly the Itrel model (Medtronic) (54,72,82) and noting spontaneous activation or deactivation of IPG. Magnet-related activation of IPG reportedly occurred spontaneously during MRI, up to 427 times during a single MRI session (54). In rare instances, it required the replacement of IPG (11). Although more recent studies have not specifically assessed IPG output, the lack of reported adverse effects or changes in patients’ clinical status is reassuring and suggests modern IPG output is stable during MRI (12,16,40,73). Nevertheless, IPG status should be routinely checked after MRI. Stability of the DBS device impedances ensure the electrical circuit integrity of the system and the stability of peri-electrode tissue (eg, absence of gross edema or hemorrhage) (12,73). Finally, few recent studies explicitly report performing MRI while modern IPGs were turned on using patients’ optimal stimulation settings, most often monopolar stimulation (12,16,73). At present, only one vendor allows IPG to be turned on to bipolar stimulation during MRI (9). This is problematic because turning off the IPG or using suboptimal settings typically exacerbates patients’ symptoms. Clarifying the safety and stability of IPG output requires further studies, regardless of current type.

Figure 5: Images show deep brain stimulation (DBS) artifact distributions. DBS hardware artifact probability maps for, A, B, coil artifact and, C–J, DBS electrode contacts included in study cohort. For group analysis, individual participant’s coil and electrode contact artifacts were transformed (ie, normalized) to standard brain (Montreal Neurological Institute [MNI] brain). Left-sided artifacts were flipped on right side. Artifact frequency maps were then obtained by summing artifacts and then dividing by size of each group (color bar unit equals percentage). A, C, E, G, I. Two-dimensional frequency maps are shown on axial T1-weighted images from MRI of brain. Frequency maps were thresholded at 10% (ie, these voxels were only shaded in 10% of participants) for visualization. Right and left images follow radiologic conventions. B, D, F, H, J, Three-dimensional reconstructions of frequency maps are shown in T1-weighted MNI brain image with relevant DBS target. Three-dimensional visualization of DBS targets was performed with Lead-DBS toolbox (https://www.lead-dbs.org). Anterior thalamic nucleus contact artifact map was not included because it applied to only one participant. AD = Alzheimer disease, AN = anorexia nervosa, GPi = globus pallidus interna, MDD = major depressive disorder, PD = Parkinson disease, SCC = subcallosal cingulate cortex, STN = subthalamic nucleus. (Reprinted, with permission, from reference 73.)

Facilitate important discoveries in the field of neuromodulation. Given the constant evolution of MRI systems and DBS devices, it is difficult to differentiate between inherent risks and lack of safety testing by the implant manufacturer. As with most aspects

Technologic and Tools to Improve Safety

Technologic advancements create opportunities to use techniques and tools to improve MRI safety for patients with DBS (Table 2). Since the Food and Drug Administration warning was archived in 2011, a dramatic increase in studies report innovative ways to improve MRI safety for patients with neurostimulators (Fig 1).

Table 2 categorizes technique and tool-related studies into optimized MRI acquisition parameters, DBS hardware modification, MRI hardware (including coils), and simulation models (Table 2). Few studies aim to change DBS device design, possibly due to the proprietary nature of medical devices and the technologic and economic barriers precluding
most researchers from building in-house devices. For example, Elwassif et al (83) incorporated device components to act as heat sinks (ie, modification of the thermal conductivity of support material), which can disperse potentially hazardous temperature rises. In addition to safety considerations, DBS electrode design may undergo modification to decrease the MRI-related susceptibility artifact (84,85). Other studies have reported MRI hardware and coil modifications to improve MRI safety. Given the influence of the spatial relationship between MRI coils and the DBS device, investigators have developed modified coils resulting in lower SAR and heating, specifically proposing the use of a rotatable linearly polarized birdcage transmitter (86,87) and an optimized parallel RF transmission with a different coil design (88–91).

One group dedicated their efforts into customizing MRI acquisition parameters to limit the use of RF pulses—and thus SAR—while maintaining image quality (92–94). Finally, computational models provide an opportunity to explore the multivariable problem of RF-associated heating and further elucidate the interaction between electromagnetic fields and biologic tissues (95,96). Generally, these studies aim to either provide tools that computationally simulate and estimate temperature rise at the electrode or establish a means through which to minimize DBS device heating on an individual patient basis. Individualized models of patients with DBS (97–99), high-spatial-resolution anatomic templates (100), and the angle of DBS lead insertion (101) have been investigated with computerized simulation. However, these tools require further studies to confirm their reliability in maintaining patient safety.

Summary of Best Practice Guidelines for Imaging Patients with DBS

Patients with DBS devices commonly present for MRI examinations. Fortunately, newer DBS devices have less restrictive MRI guidelines and more practical vendor specifications. However, radiologists commonly have requests for MRI examinations outside of the labeling requirements of a specific DBS device. In these circumstances, the clinician must determine whether (and how) to proceed with the

Table 2: Techniques and Tools to Improve MRI Safety

<table>
<thead>
<tr>
<th>Study</th>
<th>Category</th>
<th>Summary Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarkar et al, 2014 (92); Sarkar et al, 2014 (93); Sarkar et al, 2014 (94)</td>
<td>MRI acquisition parameters</td>
<td>Routine clinical sequence (eg, STIR) modified to a low SAR version (eg, decreased scan averages) while maintaining tissue contrast and clinically feasible acquisition times</td>
</tr>
<tr>
<td>Elwassif et al, 2012 (83)</td>
<td>DBS hardware</td>
<td>Electrode with a heat sink (change of the insulation material) to decrease heating</td>
</tr>
<tr>
<td>Serano et al, 2015 (112)</td>
<td>DBS hardware</td>
<td>Electrode with a resistive tapered stripline design (ie, stripline-based design to scatter the RF energy) to decrease SAR and heating</td>
</tr>
<tr>
<td>Golestanirad et al, 2019 (113)</td>
<td>DBS hardware</td>
<td>Electrode with thin layer of high dielectric constant material coat to decrease SAR and heating</td>
</tr>
<tr>
<td>Eryaman et al, 2015 (114); Gudino et al, 2015 (115); McElcheran et al, 2015 (89); McElcheran et al, 2017 (90); Eryaman et al, 2019 (116); Guerin et al, 2019 (91); McElcheran et al, 2019 (88)</td>
<td>MRI hardware and coil</td>
<td>Parallel RF transmit to minimize SAR and heating</td>
</tr>
<tr>
<td>Golestanirad et al, 2017 (86); Golestanirad et al, 2017 (87); Golestanirad et al, 2019 (117); Kazemivalipour et al, 2019 (118)</td>
<td>MRI hardware and coil</td>
<td>Patient-adjustable reconfigurable coil (ie, rotatable linearly polarized birdcage transmitter) to minimize SAR and heating</td>
</tr>
<tr>
<td>Golestanirad et al, 2019 (119)</td>
<td>MRI hardware and coil</td>
<td>High-field vertical scanners to minimize SAR</td>
</tr>
<tr>
<td>Golombeck et al, 2002 (96)</td>
<td>Simulation models</td>
<td>Thermodynamic algorithm to estimate heating</td>
</tr>
<tr>
<td>Angelone et al, 2010 (120)</td>
<td>Simulation models</td>
<td>Computational model aiming at balancing the requirements of SAR deposition at the tip of the lead and power dissipation of the device battery</td>
</tr>
<tr>
<td>Iacono et al, 2013 (100)</td>
<td>Simulation models</td>
<td>Numerical modeling of the RF field in patients with DBS by using MRI anatomic details</td>
</tr>
<tr>
<td>Bonmassar et al, 2014 (99)</td>
<td>Simulation models</td>
<td>MRI-based virtual patient simulator to enable estimation of safety parameters (eg, SAR), to improve RF power dosimetry, and to evaluate the effect of different lead pathway and MRI technology</td>
</tr>
<tr>
<td>Guerin et al, 2018 (98)</td>
<td>Simulation models</td>
<td>CT-based virtual patient simulator to enable estimation of SAR</td>
</tr>
<tr>
<td>Golestanirad et al, 2019 (101)</td>
<td>Simulation models</td>
<td>CT-based computation modeling of SAR and heating, which also assesses DBS device configuration influence</td>
</tr>
</tbody>
</table>

Note.—DBS = deep brain stimulation, RF = radiofrequency, SAR = specific absorption rate, STIR = short inversion time inversion-recovery.
Finally, MRI safety advances in patients with DBS have opened research possibilities. Specifically, prospective acquisition of suboptimal functional MRI data (i.e., 1.5 T, head-transmit coil) in patients with Parkinson disease and DBS showed promise as a marker of efficacy, suggesting that state-of-the-art functional neuroimaging data (i.e., 3.0 T, body-transmit coil) may potentially represent an unparalleled research tool to probe brain functions. The risks of DBS devices in ultra-high-field-strength MRI (i.e., 7.0 T) remains unevaluated (105). However, investigating the safety of ultra-high-field-strength MRI in patients with DBS is garnering interest because of its potential to be used as a powerful research and clinical tool.

Conclusion

Following MRI-related patient injuries in the early 2000s, considerable efforts have been made by both vendors and the scientific community to advance our understanding of deep brain stimulation (DBS) device and MRI safety and to provide further safeguards. Notably, heating remains a serious issue when venturing outside the prescribed guidelines. At present, investigators are using innovative methods, particularly computational models, to assess MRI safety of neurostimulators in a more comprehensive and generalizable manner. Tailoring MRI safety guidelines to the individual may be the sensible next step for realizing the full potential of MRI in patients with a DBS device.

MRI examination. Based on the guidelines of DBS vendors (8–10), reviewed literature, and our experience, we include a summary of recommendations for best practices for MRI in patients with DBS devices (Fig 6). These recommendations are not intended to account for all circumstances but provide a framework through which radiology groups can approach MRI in patients with DBS devices.

Future Directions

Heating remains the primary risk associated with DBS devices. This requires an accurate and reliable way to predict implant heating, rather than simply providing whole-body measures of heating, such as SAR or B_{1+RMS} (32,42,99).

In the future, institutions that adopt patient-specific computerized models could then be applied in simulation software (102). The simulation tools currently under development align with providing individualized safety risks (97–99). If needed, then radiologists could modify routinely used protocols to remain within the safe limits determined by the bespoke simulation software, rather than limiting patients to the same MRI field strengths and low-SAR pulse sequences as if they were a homogeneous group.

Lowering the risk of heating altogether is not an easy task, as it would primarily involve changing the design of DBS devices and minimizing wire length. Drastic reductions in heating could potentially be achieved with technologic advancements such as much smaller, cranially placed IPG or wireless electrodes (103,104).

MRI examination. Based on the guidelines of DBS vendors (8–10), reviewed literature, and our experience, we include a summary of recommendations for best practices for MRI in patients with DBS devices (Fig 6). These recommendations are not intended to account for all circumstances but provide a framework through which radiology groups can approach MRI in patients with DBS devices.

Future Directions

Heating remains the primary risk associated with DBS devices. This requires an accurate and reliable way to predict implant heating, rather than simply providing whole-body measures of heating, such as SAR or B_{1+RMS} (32,42,99).

In the future, institutions that adopt patient-specific computerized models could then be applied in simulation software (102). The simulation tools currently under development align with providing individualized safety risks (97–99). If needed, then radiologists could modify routinely used protocols to remain within the safe limits determined by the bespoke simulation software, rather than limiting patients to the same MRI field strengths and low-SAR pulse sequences as if they were a homogeneous group.

Lowering the risk of heating altogether is not an easy task, as it would primarily involve changing the design of DBS devices and minimizing wire length. Drastic reductions in heating could potentially be achieved with technologic advancements such as much smaller, cranially placed IPG or wireless electrodes (103,104).

Figure 6: Image shows summary recommendations of best practices for MRI in patients with deep brain stimulation (DBS) devices. These recommendations are based on guidelines of DBS vendors, literature reviewed herein, and authors’ own experience. Recommendations for performing safety testing can be found in American Society for Testing and Materials International, International Organization for Standardization Technical Standard 10974, and other documents. $B_{1+RMS} =$ root-mean-square value of MRI effective component of RF magnetic (B_1) field, RF = radiofrequency, SAR = specific absorption rate. Source.—References 8–10, 25, 28, 29.
Acknowledgments: We would like to thank our illustrator, Andrew O’Connor, BA, for helping with the design of Figure 2.

Disclosures of Conflicts of Interest: A.B. disclosed no relevant relationships. C.T.C. disclosed no relevant relationships. G.J.B.E. disclosed no relevant relationships. C.N. disclosed no relevant relationships. J.G. disclosed no relevant relationships. M.R. disclosed no relevant relationships. A.L. disclosed no relevant relationships. A.J.M. Activities related to the present article: disclosed no relevant relationships. Activities not related to the present article: has grants/grants pending for MRI interventions (ClearPoint Neuro); is a consultant for University of Wisconsin Research Foundation. Other relationships disclosed no relevant relationships. W.K. Activities related to the present article: disclosed no relevant relationships. Activities not related to the present article: employed by Siemens; is a consultant for GE Healthcare; is a consultant for Siemens; is a consultant for SA Instruments; is a consultant for Medtronic; is employed by the National Institutes of Health. Other relationships: disclosed no relevant relationships. A.M.L. Activities related to the present article: disclosed no relevant relationships. Activities not related to the present article: is a consultant for Abbott, Boston Scientific, Functional Neuromodulation, and Medtronic. Other relationships: disclosed no relevant relationships.

References

Table E1. MRI safety studies with phantom models

<table>
<thead>
<tr>
<th>Study</th>
<th>DBS Neurostimulators</th>
<th>Phantom Shape</th>
<th>MRI Hardware</th>
<th>MRI Coil</th>
<th>Experimental Design</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gleason (1992)</td>
<td>i. Medtronic</td>
<td>Cylinder Liquid (H$_2$O)</td>
<td>1.5T GE Signa II, (software N/S) - 0.3T Diasonics MT/S, (software N/S)</td>
<td>Head-transmit - Body-transmit</td>
<td>Temperature elevations and DBS device movement with different field strengths. IPG output. DBS ON.</td>
<td>Temperature increased up to 27°C rise at the IPG - IPG dysfunctions - Significant movement on IPG (Cordis)</td>
</tr>
<tr>
<td></td>
<td>ii. N/S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. N/S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Itrel I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. 3360A, 7560A, 3464</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Avery Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. N/S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. N/S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. N/S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Model 1 110A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>i. Cordis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii. N/S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. N/S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. MK II 904A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schueler (1999)</td>
<td>i. Medtronic</td>
<td>Oval shoulders Semisolid (NiSO$_4$: 1.25 g/L)</td>
<td>1.5T Siemens Magnetom SP Vision</td>
<td>Head-transmit/head-receive - Body-transmit/body-receive</td>
<td>Temperature elevations and DBS device movement. IPG output. DBS ON.</td>
<td>No temperature rise. - No lead or IPG movement. - IPG dysfunctions.</td>
</tr>
<tr>
<td></td>
<td>ii. 3387</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. 7496</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Itrel II, Itrel III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v. Xtre, Matrix receiver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finelli (2002)</td>
<td>i. Medtronic</td>
<td>Head/torso Semisolid (PAA: 5.85 g/L)</td>
<td>1.5T Siemens Vision software v. Numaris 3.0, (model N/S)</td>
<td>Head-transmit/head-receive</td>
<td>Temperature elevations with different pulse sequences.</td>
<td>Temperature increased up to 6.7°C at the electrode tip when extension wire excess behind IPG (SAR 7.3 W/kg) - Largest temperature rise with the excess extension wire behind IPG</td>
</tr>
<tr>
<td></td>
<td>ii. 3387, 3389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. 7495</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Soletra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kainz (2002)</td>
<td>i. Medtronic</td>
<td>Head/torso Semisolid (ethylene glycol, natrium chloride)</td>
<td>1.5T Siemens Magnetorn, (software N/S) - 3.0T Bruker BioPac, (software N/S)</td>
<td>N/S</td>
<td>Temperature elevations with different field strengths. DBS OFF.</td>
<td>Temperature increased up to 2.1°C at the electrode tips at 1.5T (SAR 2 W/kg) - Head MRI caused slightly more temperature increase than chest MRI - Temperature increases were similar for both 1.5T and 3.0T</td>
</tr>
<tr>
<td></td>
<td>ii. 3387</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii. N/S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv. Itrel 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rezai (2002)</td>
<td>i. Medtronic</td>
<td>Head/torso Semisolid (PAA: 6.5 g/L)</td>
<td>1.5T Siemens Vision software v.</td>
<td>Head-transmit/head-receive</td>
<td>Temperature elevations with</td>
<td>Highest temperature elevations at the left electrode tips was 25.3°C when extension wire</td>
</tr>
<tr>
<td></td>
<td>ii. 3387, 3389</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park (2003) (59)</td>
<td>i. Medtronic</td>
<td>ii. 3387</td>
<td>iii. 7495</td>
<td>iv. Soletra</td>
<td>Torso Semisolid (PAA: 0.7 g/L, 3.90 g/L, 5.85 g/L)</td>
<td>– 1.5T GE Signa, (software N/S)</td>
</tr>
<tr>
<td>Baker (2004) (7)</td>
<td>i. Medtronic</td>
<td>ii. 3387</td>
<td>iii. 7495</td>
<td>iv. Soletra</td>
<td>Head/torso Semisolid (conc: 5.85 g/L)</td>
<td>– 1.5T Siemens MR system 1 software Symphony v. Numaris 4 VA21B – 1.5T Siemens MR system 2 software Vision v. Numaris 3.0 VB33G</td>
</tr>
<tr>
<td>Georgi (2004) (35)</td>
<td>i. Medtronic</td>
<td>ii. 3387</td>
<td>iii. N/S</td>
<td>iv. N/S</td>
<td>Head Liquid (NaCl or agar gel)</td>
<td>– 1.5T Siemens Symphony Quantum, (software N/S) – 2.35T Bruker BioSpec, (software N/S)</td>
</tr>
<tr>
<td>Baker (2005) (66)</td>
<td>i. Medtronic</td>
<td>ii. 3387–40</td>
<td>iii. 7495–51</td>
<td>iv. Soletra</td>
<td>Head Semisolid (PAA: 5.85 g/L)</td>
<td>– 1.5T Siemens Magnetom software Vision – 3.0T Siemens Magnetom software Allegra</td>
</tr>
<tr>
<td>Bhidayasiri (2005) (37)</td>
<td>i. Medtronic</td>
<td>ii. 3387</td>
<td>iii. 7495</td>
<td>iv. Soletra</td>
<td>Head/torso Semisolid (PAA: 5.85 g/L)</td>
<td>– 1.5T Siemens Sonata software Numaris/4 v. Syngo MR2002B</td>
</tr>
<tr>
<td>Phillips (2006) (64)</td>
<td>i. Medtronic</td>
<td>ii. 3387, 3389</td>
<td>iii. N/S</td>
<td>iv. Soletra</td>
<td>Head/torso Semisolid (PAA: 5.85 g/L)</td>
<td>– 3.0T Siemens Allegra software Numaris Syngo v. VA21C</td>
</tr>
<tr>
<td>Baker (2006) (44)</td>
<td>i. Medtronic</td>
<td>ii. 3387–40</td>
<td>iii. 7495–51</td>
<td>iv. Soletra</td>
<td>Head/torso Semisolid (PAA: 5.85 g/L)</td>
<td>– 1.5T Siemens MR system 1 software Symphony v. N4 _VA25A – 1.5T Siemens MR system 2 software Avanto v. N4 _VB11D</td>
</tr>
<tr>
<td>Carmichael (2007) (51)</td>
<td>i. Medtronic</td>
<td>ii. 3389</td>
<td>iii. 7482</td>
<td>iv. Kinetra</td>
<td>Torso Semisolid (PAA: 8.0 g/L)</td>
<td>– 1.5T GE Signa Horizon LX Level 9.1 – 3.0T GE Excite Level 12 M4</td>
</tr>
</tbody>
</table>
| Mohsin (2011) (121) | i. Medtronic
ii. 3387, 3389
iii. N/S
iv. N/S | N/S | – 1.5T, (brand, model, software N/S)
– Head-transmit/head-receive | Temperature elevations with different SAR and lead length. | – SAR highest around the electrode
– SAR highest with longer lead |
| --- | --- | --- | --- | --- | --- |
| Nazzaro (2014) (62) | i. Medtronic
ii. 3387
iii. 7482, 7482
v. Solostra, Kineta | Head/torso Semisolid (PAA)
– 3.0T Siemens Magnetom Allegra software 2004A | – Head-transmit/head-receive | Temperature elevations with single versus dual IPG. | – Temperature elevations were higher with bilateral (6.3°C) versus single IPG (3.8°C)
– Temperature elevations higher at left electrode tip |
| Kahan (2015) (39) | i. Medtronic
ii. 3389
iii. 37085
v. Activa PC | Head/torso Semisolid (PAA: 8.0 g/L)
– 1.5T Siemens Magnetom Avanto software VB17
– 3.0T Siemens Tim Trio software VB17 | – Head-transmit/body-receive
– Body-transmit/head-receive | Temperature elevations with different field strengths and coils. IPG output. DBS ON. | – Temperature elevations were higher with body-transmit (1.3°C at 3.0T) versus head-transmit coil (1.4°C at 3.0T)
– Temperature elevations were higher with 3.0T (1.4°C body coil) versus 1.5T (0.8°C body coil)
– Phantom position relative to the body coil slightly impacted temperature elevations at 1.5T (< 1°C)
– IPG output stable |
| Sammartino (2017) (40) | i. Medtronic
ii. 3387
iii. 7482
v. Solostra | Head/torso Semisolid (PAA: 8.0 g/L)
– 3.0T GE Signa software HDx v. 16.0 V02 1131.a | – Head-transmit/head-receive
– Body-transmit/head-receive | Temperature elevations with different pulse sequences and coils. DBS OFF. | – Temperature elevations with clinical pulse sequences were < 1°C at the electrode tips with both coils. |
| Boutet (2019) (12) | i. Medtronic
ii. 3387
iii. 37086
v. Activa PC | Head/torso Semisolid (PAA: 8.0 g/L)
– 3.0T GE Signa software HDx v. 16.0 V02 1131.a | – Head-transmit/head-receive
– Body-transmit/head-receive | Temperature elevations with clinical pulse sequences were < 2°C at the electrode tips
– Highest temperature elevation (6.4°C), SAR 2.1 = W/kg/B_{1+rms}=1.8\mu T) with unilateral DBS with loose side extensions
– Temperature elevations similar for both coils
– IPG output stable | – Temperature elevations with clinical pulse sequences were < 1°C using 3.0T body-transmit/head-receive
– Highest temperature elevation (0.9°C), SAR = 1.3 W/kg/B_{1+rms}=2.6\mu T)
– Temperature elevations with both configurations were < 1°C |

Abbreviations: °C = Celsius, B_{1+rms} = root-mean-square value of the MRI effective component of the RF magnetic [B1] field, DBS = deep brain stimulation, ext = extension, GE = General Electric, H2O = distilled water, IPG = implantable pulse generator, kg = kilogram, L = liter, N/S = not specified, NaCl = sodium chloride, NiSO4 = nickel sulfate, PAA = polyacrylic acid, Rec = receiver, SAR = specific absorption rate, SD = standard deviation, T = tesla, v. = version, W = watts, \(\mu = \) micro.
Table E2. MRI safety studies with animals

<table>
<thead>
<tr>
<th>Study</th>
<th>Animals</th>
<th>DBS Hardware</th>
<th>MRI Hardware</th>
<th>MRI Coil</th>
<th>Experimental Design</th>
<th>Results/Adverse Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrivastava (2010) (122)</td>
<td>4 porcine heads</td>
<td>i. Medtronic ii. 3389 (externalized) iii. N/S iv. N/S</td>
<td>– No MRI used, only coil</td>
<td>– Head-transmit/head-receive</td>
<td>Temperature elevations with different orientations of extracranial portion of a DBS lead. DBS OFF.</td>
<td>– Temperature elevation up to 27°C (SAR = 2.94 W/kg) with perpendicular direction of the lead compared with 5°C (SAR = 2.94 W/kg) with axial direction at the electrode tips.</td>
</tr>
<tr>
<td>Shrivastava (2012) (69)</td>
<td>3 porcine heads</td>
<td>i. Medtronic ii. 3389 (externalized) iii. N/S iv. N/S</td>
<td>– 3.0T Siemens Trio (software N/S)</td>
<td>– Head-transmit/head-receive</td>
<td>Temperature elevations with different orientations of extracranial portion of a DBS lead. DBS OFF.</td>
<td>– Temperature elevation up to 24.7°C (SAR = 3.16 W/kg) with lateral lead loop compared with 3.2°C (SAR = 3.16 W/kg) with axial direction.</td>
</tr>
<tr>
<td>Gorny (2013) (123)</td>
<td>1 pig</td>
<td>i. Medtronic ii. 3389 iii. N/S iv. Soletra</td>
<td>– 1.5T/3.0T GE 14.0 M4 (software N/S)</td>
<td>– Head-transmit/head-receive</td>
<td>Temperature elevations with different pulse sequences. DBS ON/OFF.</td>
<td>– 3.0T MRI using GRE EPI and IR-FSPGR sequences (SAR = 0.41 W/kg/B₁+rms, 0.30 uT and 0.49 W/kg/B₁+rms, 1.09 uT, respectively) resulted in local temperature elevations at DBS electrodes of no more than 0.46°C</td>
</tr>
<tr>
<td>Shi (2014) (124)</td>
<td>48♂ rabbits</td>
<td>i. PINS Medical ii. Model G101 iii. Model G101 iv. Model G101</td>
<td>– 1.5T GE Signa HDxt GE software – 3.0T Siemens Verio Syngo software – 7.0T Bruker ClinScan, Syngo software</td>
<td>– N/S</td>
<td>Pathologic and molecular responses of brain tissue surrounding DBS leads, with different field strength. DBS OFF.</td>
<td>– No MRI-related detectable injury on brain tissue near DBS electrodes (1.5T, 3.0T, and 7.0T; SAR up to 2.96 W/kg)</td>
</tr>
<tr>
<td>Chen (2017) (125)</td>
<td>24♂ rabbits</td>
<td>i. PINS Medical ii. Model G101 iii. Model G101 iv. Model G101</td>
<td>– 1.5T GE Signa HDxt GE software – 3.0T Siemens Verio Syngo software – 7.0T Bruker ClinScan, Syngo software</td>
<td>– N/S</td>
<td>Pathologic and molecular responses of brain tissue surrounding DBS leads, with different field strength.</td>
<td>– No MRI-related detectable injury on brain tissue near DBS electrodes (1.5T, 3.0T, and 7.0T; SAR up to 2.91 W/kg)</td>
</tr>
</tbody>
</table>

Abbreviations. ♂ = male, °C = Celsius, GE = General Electric, GRE-EPI = echo-planar imaging, IR-FSPGR = fast spoiled grass sequence with IR preparation, kg = kilograms, N/S = not specified, SAR = specific absorption rate, T = tesla, W = watts, µ = micro.

Table E3. MRI safety studies with participants

<table>
<thead>
<tr>
<th>Study</th>
<th>No. Patients</th>
<th>DBS Hardware</th>
<th>MRI Hardware</th>
<th>MRI Coil</th>
<th>Experimental Design</th>
<th>Results/Adverse Events</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of Subjects</th>
<th>Medtronic Models</th>
<th>Platinum-Iridium</th>
<th>Itrel Models</th>
<th>MRI Field Strengths</th>
<th>MRI Software</th>
<th>DBS Device Assessment</th>
<th>IPG Dysfunctions</th>
<th>Patient Adverse Effects</th>
<th>SAR</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uitti (2002) (126)</td>
<td>5</td>
<td>i. Medtronic ii. 3387, 3389 iii. Platinum-iridium iv. Itrel II (internalized)</td>
<td>– 1.5T GE Horizon LX (software N/S)</td>
<td>– N/S</td>
<td>Lead movement during MRI. DBS OFF.</td>
<td>– No significant lead movement – No patient adverse effects – SAR: N/S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larson (2008) (22)</td>
<td>405</td>
<td>i. Medtronic ii. 3387 iii. N/S iv. Itrel II, Soletra, Kinetra (internalized) i. ANS ii. Quattrode iii. N/S iv. Libra (internalized)</td>
<td>– 1.5T Siemens Magnetom Vision (software N/S) – 1.5T Siemens Magnetom Symphony (software N/S) – 1.5T Philips Intera, Achieva release 1.5 software – 1.5T GE Horizon (software N/S)</td>
<td>– Body-transmit/head-receive – Head-transmit/head-receive</td>
<td>Clinical and DBS device assessment after MRI. DBS OFF.</td>
<td>– No patient adverse effects (SAR up to 3.0 W/kg) – No IPG dysfunction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tagliati (2009) (11)</td>
<td>3481 (42 centers)</td>
<td>N/S</td>
<td>– 1.0T/1.5T GE/Siemens/Philips (software and model N/S)</td>
<td>– N/S</td>
<td>Clinical and DBS device assessment after MRI (DBS activity: N/S).</td>
<td>– No patient adverse effects – Single IPG dysfunction during scanning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chhabra (2010) (70)</td>
<td>64</td>
<td>i. Medtronic ii. N/S iii. N/S iv. Itrel II, Soletra (internalized)</td>
<td>– GE Signa – Philips Achieva – Siemens Symphony (field strengths, softwares N/S)</td>
<td>– Body-transmit/head-receive</td>
<td>Clinical assessment after MRI. DBS OFF.</td>
<td>– No patient adverse effects (SAR up to 0.8 W/kg) – Perielectrode acute postoperative changes on MRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraix (2010) (71)</td>
<td>570</td>
<td>i. Medtronic ii. 3387, 3388, 3389 iii. N/S iv. Itrel I, Itrel II, Soletra, Kinetra (internalized)</td>
<td>– 1.0T/1.5T Philips Gyroscan ACS ii (software N/S)</td>
<td>– Body-transmit/head-receive – Body-transmit/body-receive</td>
<td>Clinical and DBS device assessment after MRI. DBS OFF.</td>
<td>– No patient adverse effects (SAR up to 2.4 W/kg and spine SAR up to 4.0 W/kg) – No IPG dysfunction when magnet reed switch disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nazzaro (2010) (72)</td>
<td>249</td>
<td>i. Medtronic ii. 3387, 3389 iii. 3550–05</td>
<td>– 1.5T Siemens Magnetom, VA 2.7 software</td>
<td>– Head-transmit/head-receive</td>
<td>Clinical assessment after MRI. DBS OFF.</td>
<td>– No patient adverse effects (SAR up to 3.1 W/kg) – Questionable IPG dysfunctions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>MRI Field Strength</td>
<td>MRI System</td>
<td>DBS Device</td>
<td>Clinical and DBS Device Assessment</td>
<td>Adverse Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ullman (2011) (128)</td>
<td>1.5T Siemens Magnetom Vision/Vision Plus, Numaris 3 VG33G software</td>
<td>N/S</td>
<td>Clinical, neuropathological, and DBS device assessment after MRI. DBS OFF.</td>
<td>No patient adverse effects</td>
<td>No neuropathological adverse effects</td>
<td>No IPG dysfunction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sammartino (2017) (40)</td>
<td>i. Medtronic ii. 3387 iii. N/S iv. Activa PC</td>
<td>3.0T GE Signa Excite (software N/S)</td>
<td>Clinical and DBS device assessment after MRI. DBS OFF.</td>
<td>No patient adverse effects (SAR up to 2.3 W/kg)</td>
<td>No IPG dysfunction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hancu (2019) (16)</td>
<td>i. Medtronic ii. 3387, 3389 iii. 37086 iv. Activa PC</td>
<td>1.5T GE HDx, 3.0T GE Architect, 3.0T GE HDx (softwares N/S)</td>
<td>Clinical and DBS device assessment after MRI. DBS ON.</td>
<td>No patient adverse effects (SAR up to 0.3 W/kg and B1+rms up to 1.32 uT)</td>
<td>Impedances stable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boutet (2019) (12)</td>
<td>i. Medtronic ii. 3387 iii. 37086 iv. Activa PC</td>
<td>3.0T GE Signa HDx, HDx v. 16.0 V02 1131.a software</td>
<td>Clinical and DBS device assessment after MRI. DBS ON.</td>
<td>No patient adverse effects (SAR up to 1.09 W/kg and B1+rms up to 1.40 uT)</td>
<td>Impedances stable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boutet (2019) (73)</td>
<td>i. Medtronic ii. 3387, 3389 iii. 37086 iv. Activa PC/RC/SC</td>
<td>3.0T GE Signa, HDx v. 16.0 V02 1131.a software, 1.5T GE Signa, HDx? v. 23.0 V02 1406.a software, 3.0T GE Signa, Architect v. 27/LX/MR software</td>
<td>Clinical and DBS device assessment after MRI. DBS ON.</td>
<td>No patient adverse effects (SAR up to 1.09 W/kg and B1+rms up to 1.40 uT)</td>
<td>Impedances stable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: B1+rms = root-mean-square value of the MRI effective component of the RF magnetic [B1] field, DBS = deep brain stimulation, GE = General Electric, IPG = implantable pulse generator, kg = kilograms, MRI = magnetic resonance imaging, N/S = not specified, No. = number, SAR = specific absorption rate, W = watts.
References

121. Mohsin SA. Concentration of the Specific Absorption Rate Around Deep Brain Stimulation Electrodes During MRI. Prog Electromagn Res 2011;121:469–484.

