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Linear Classification
In the last section we introduced the problem of Image Classi�cation, which is the task of assigning a single label
to an image from a �xed set of categories. Moreover, we described the k-Nearest Neighbor (kNN) classi�er which
labels images by comparing them to (annotated) images from the training set. As we saw, kNN has a number of
disadvantages:

The classi�er must remember all of the training data and store it for future comparisons with the test data.
This is space ine�cient because datasets may easily be gigabytes in size.
Classifying a test image is expensive since it requires a comparison to all training images.

Overview. We are now going to develop a more powerful approach to image classi�cation that we will eventually
naturally extend to entire Neural Networks and Convolutional Neural Networks. The approach will have two major
components: a score function that maps the raw data to class scores, and a loss function that quanti�es the
agreement between the predicted scores and the ground truth labels. We will then cast this as an optimization
problem in which we will minimize the loss function with respect to the parameters of the score function.

Parameterized mapping from images to label scores
The �rst component of this approach is to de�ne the score function that maps the pixel values of an image to
con�dence scores for each class. We will develop the approach with a concrete example. As before, let’s assume a
training dataset of images , each associated with a label . Here  and . That is,
we have N examples (each with a dimensionality D) and K distinct categories. For example, in CIFAR-10 we have a
training set of N = 50,000 images, each with D = 32 x 32 x 3 = 3072 pixels, and K = 10, since there are 10 distinct
classes (dog, cat, car, etc). We will now de�ne the score function  that maps the raw image pixels to
class scores.

Linear classi�er. In this module we will start out with arguably the simplest possible function, a linear mapping:

In the above equation, we are assuming that the image  has all of its pixels �attened out to a single column
vector of shape [D x 1]. The matrix W (of size [K x D]), and the vector b (of size [K x 1]) are the parameters of the
function. In CIFAR-10,  contains all pixels in the i-th image �attened into a single [3072 x 1] column, W is [10 x
3072] and b is [10 x 1], so 3072 numbers come into the function (the raw pixel values) and 10 numbers come out
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(the class scores). The parameters in W are often called the weights, and b is called the bias vector because it
in�uences the output scores, but without interacting with the actual data . However, you will often hear people
use the terms weights and parameters interchangeably.

There are a few things to note:

First, note that the single matrix multiplication  is effectively evaluating 10 separate classi�ers in parallel
(one for each class), where each classi�er is a row of W.
Notice also that we think of the input data  as given and �xed, but we have control over the setting of
the parameters W,b. Our goal will be to set these in such way that the computed scores match the ground
truth labels across the whole training set. We will go into much more detail about how this is done, but
intuitively we wish that the correct class has a score that is higher than the scores of incorrect classes.
An advantage of this approach is that the training data is used to learn the parameters W,b, but once the
learning is complete we can discard the entire training set and only keep the learned parameters. That is
because a new test image can be simply forwarded through the function and classi�ed based on the
computed scores.
Lastly, note that classifying the test image involves a single matrix multiplication and addition, which is
signi�cantly faster than comparing a test image to all training images.

Interpreting a linear classifier
Notice that a linear classi�er computes the score of a class as a weighted sum of all of its pixel values across all 3
of its color channels. Depending on precisely what values we set for these weights, the function has the capacity to
like or dislike (depending on the sign of each weight) certain colors at certain positions in the image. For instance,
you can imagine that the “ship” class might be more likely if there is a lot of blue on the sides of an image (which
could likely correspond to water). You might expect that the “ship” classi�er would then have a lot of positive
weights across its blue channel weights (presence of blue increases score of ship), and negative weights in the
red/green channels (presence of red/green decreases the score of ship).

An example of mapping an image to class scores. For the sake of visualization, we assume the image only has 4 pixels (4
monochrome pixels, we are not considering color channels in this example for brevity), and that we have 3 classes (red (cat),
green (dog), blue (ship) class). (Clari�cation: in particular, the colors here simply indicate 3 classes and are not related to the
RGB channels.) We stretch the image pixels into a column and perform matrix multiplication to get the scores for each class.
Note that this particular set of weights W is not good at all: the weights assign our cat image a very low cat score. In particular,
this set of weights seems convinced that it's looking at a dog.

Analogy of images as high-dimensional points. Since the images are stretched into high-dimensional column
vectors, we can interpret each image as a single point in this space (e.g. each image in CIFAR-10 is a point in 3072-
dimensional space of 32x32x3 pixels). Analogously, the entire dataset is a (labeled) set of points.
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Foreshadowing: Convolutional Neural Networks will map image pixels to scores exactly as shown above, but the
mapping ( f ) will be more complex and will contain more parameters.



Since we de�ned the score of each class as a weighted sum of all image pixels, each class score is a linear
function over this space. We cannot visualize 3072-dimensional spaces, but if we imagine squashing all those
dimensions into only two dimensions, then we can try to visualize what the classi�er might be doing:

Cartoon representation of the image space, where each image is a single point, and three classi�ers are visualized. Using the
example of the car classi�er (in red), the red line shows all points in the space that get a score of zero for the car class. The red
arrow shows the direction of increase, so all points to the right of the red line have positive (and linearly increasing) scores, and
all points to the left have a negative (and linearly decreasing) scores.

As we saw above, every row of  is a classi�er for one of the classes. The geometric interpretation of these
numbers is that as we change one of the rows of , the corresponding line in the pixel space will rotate in different
directions. The biases , on the other hand, allow our classi�ers to translate the lines. In particular, note that
without the bias terms, plugging in  would always give score of zero regardless of the weights, so all lines
would be forced to cross the origin.

Interpretation of linear classi�ers as template matching. Another interpretation for the weights  is that each row
of  corresponds to a template (or sometimes also called a prototype) for one of the classes. The score of each
class for an image is then obtained by comparing each template with the image using an inner product (or dot
product) one by one to �nd the one that “�ts” best. With this terminology, the linear classi�er is doing template
matching, where the templates are learned. Another way to think of it is that we are still effectively doing Nearest
Neighbor, but instead of having thousands of training images we are only using a single image per class (although
we will learn it, and it does not necessarily have to be one of the images in the training set), and we use the
(negative) inner product as the distance instead of the L1 or L2 distance.

Skipping ahead a bit: Example learned weights at the end of learning for CIFAR-10. Note that, for example, the ship template
contains a lot of blue pixels as expected. This template will therefore give a high score once it is matched against images of
ships on the ocean with an inner product.

Additionally, note that the horse template seems to contain a two-headed horse, which is due to both left and right
facing horses in the dataset. The linear classi�er merges these two modes of horses in the data into a single
template. Similarly, the car classi�er seems to have merged several modes into a single template which has to
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identify cars from all sides, and of all colors. In particular, this template ended up being red, which hints that there
are more red cars in the CIFAR-10 dataset than of any other color. The linear classi�er is too weak to properly
account for different-colored cars, but as we will see later neural networks will allow us to perform this task.
Looking ahead a bit, a neural network will be able to develop intermediate neurons in its hidden layers that could
detect speci�c car types (e.g. green car facing left, blue car facing front, etc.), and neurons on the next layer could
combine these into a more accurate car score through a weighted sum of the individual car detectors.

Bias trick. Before moving on we want to mention a common simplifying trick to representing the two parameters
 as one. Recall that we de�ned the score function as:

As we proceed through the material it is a little cumbersome to keep track of two sets of parameters (the biases 
and weights ) separately. A commonly used trick is to combine the two sets of parameters into a single matrix
that holds both of them by extending the vector  with one additional dimension that always holds the constant 
- a default bias dimension. With the extra dimension, the new score function will simplify to a single matrix multiply:

With our CIFAR-10 example,  is now [3073 x 1] instead of [3072 x 1] - (with the extra dimension holding the
constant 1), and  is now [10 x 3073] instead of [10 x 3072]. The extra column that  now corresponds to the
bias . An illustration might help clarify:

Illustration of the bias trick. Doing a matrix multiplication and then adding a bias vector (left) is equivalent to adding a bias
dimension with a constant of 1 to all input vectors and extending the weight matrix by 1 column - a bias column (right). Thus, if
we preprocess our data by appending ones to all vectors we only have to learn a single matrix of weights instead of two
matrices that hold the weights and the biases.

Image data preprocessing. As a quick note, in the examples above we used the raw pixel values (which range from
[0…255]). In Machine Learning, it is a very common practice to always perform normalization of your input features
(in the case of images, every pixel is thought of as a feature). In particular, it is important to center your data by
subtracting the mean from every feature. In the case of images, this corresponds to computing a mean image
across the training images and subtracting it from every image to get images where the pixels range from
approximately [-127 … 127]. Further common preprocessing is to scale each input feature so that its values range
from [-1, 1]. Of these, zero mean centering is arguably more important but we will have to wait for its justi�cation
until we understand the dynamics of gradient descent.

Loss function
In the previous section we de�ned a function from the pixel values to class scores, which was parameterized by a
set of weights . Moreover, we saw that we don’t have control over the data  (it is �xed and given), but we
do have control over these weights and we want to set them so that the predicted class scores are consistent with
the ground truth labels in the training data.

For example, going back to the example image of a cat and its scores for the classes “cat”, “dog” and “ship”, we saw
that the particular set of weights in that example was not very good at all: We fed in the pixels that depict a cat but
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the cat score came out very low (-96.8) compared to the other classes (dog score 437.9 and ship score 61.95). We
are going to measure our unhappiness with outcomes such as this one with a loss function (or sometimes also
referred to as the cost function or the objective). Intuitively, the loss will be high if we’re doing a poor job of
classifying the training data, and it will be low if we’re doing well.

Multiclass Support Vector Machine loss

There are several ways to de�ne the details of the loss function. As a �rst example we will �rst develop a
commonly used loss called the Multiclass Support Vector Machine (SVM) loss. The SVM loss is set up so that the
SVM “wants” the correct class for each image to a have a score higher than the incorrect classes by some �xed
margin . Notice that it’s sometimes helpful to anthropomorphise the loss functions as we did above: The SVM
“wants” a certain outcome in the sense that the outcome would yield a lower loss (which is good).

Let’s now get more precise. Recall that for the i-th example we are given the pixels of image  and the label  that
speci�es the index of the correct class. The score function takes the pixels and computes the vector  of
class scores, which we will abbreviate to  (short for scores). For example, the score for the j-th class is the j-th
element: . The Multiclass SVM loss for the i-th example is then formalized as follows:

Example. Lets unpack this with an example to see how it works. Suppose that we have three classes that receive
the scores , and that the �rst class is the true class (i.e. ). Also assume that  (a
hyperparameter we will go into more detail about soon) is 10. The expression above sums over all incorrect
classes ( ), so we get two terms:

You can see that the �rst term gives zero since [-7 - 13 + 10] gives a negative number, which is then thresholded to
zero with the  function. We get zero loss for this pair because the correct class score (13) was greater
than the incorrect class score (-7) by at least the margin 10. In fact the difference was 20, which is much greater
than 10 but the SVM only cares that the difference is at least 10; Any additional difference above the margin is
clamped at zero with the max operation. The second term computes [11 - 13 + 10] which gives 8. That is, even
though the correct class had a higher score than the incorrect class (13 > 11), it was not greater by the desired
margin of 10. The difference was only 2, which is why the loss comes out to 8 (i.e. how much higher the difference
would have to be to meet the margin). In summary, the SVM loss function wants the score of the correct class 
to be larger than the incorrect class scores by at least by  (delta). If this is not the case, we will accumulate loss.

Note that in this particular module we are working with linear score functions (  ), so we can also
rewrite the loss function in this equivalent form:

where  is the j-th row of  reshaped as a column. However, this will not necessarily be the case once we start to
consider more complex forms of the score function .

A last piece of terminology we’ll mention before we �nish with this section is that the threshold at zero 
function is often called the hinge loss. You’ll sometimes hear about people instead using the squared hinge loss
SVM (or L2-SVM), which uses the form  that penalizes violated margins more strongly (quadratically
instead of linearly). The unsquared version is more standard, but in some datasets the squared hinge loss can
work better. This can be determined during cross-validation.
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The Multiclass Support Vector Machine "wants" the score of the correct class to be higher than all other scores by at least a
margin of delta. If any class has a score inside the red region (or higher), then there will be accumulated loss. Otherwise the
loss will be zero. Our objective will be to �nd the weights that will simultaneously satisfy this constraint for all examples in the
training data and give a total loss that is as low as possible.

Regularization. There is one bug with the loss function we presented above. Suppose that we have a dataset and a
set of parameters W that correctly classify every example (i.e. all scores are so that all the margins are met, and

 for all i). The issue is that this set of W is not necessarily unique: there might be many similar W that
correctly classify the examples. One easy way to see this is that if some parameters W correctly classify all
examples (so loss is zero for each example), then any multiple of these parameters  where  will also give
zero loss because this transformation uniformly stretches all score magnitudes and hence also their absolute
differences. For example, if the difference in scores between a correct class and a nearest incorrect class was 15,
then multiplying all elements of W by 2 would make the new difference 30.

In other words, we wish to encode some preference for a certain set of weights W over others to remove this
ambiguity. We can do so by extending the loss function with a regularization penalty . The most common
regularization penalty is the squared L2 norm that discourages large weights through an elementwise quadratic
penalty over all parameters:

In the expression above, we are summing up all the squared elements of . Notice that the regularization function
is not a function of the data, it is only based on the weights. Including the regularization penalty completes the full
Multiclass Support Vector Machine loss, which is made up of two components: the data loss (which is the average
loss  over all examples) and the regularization loss. That is, the full Multiclass SVM loss becomes:

Or expanding this out in its full form:

Where  is the number of training examples. As you can see, we append the regularization penalty to the loss
objective, weighted by a hyperparameter . There is no simple way of setting this hyperparameter and it is usually
determined by cross-validation.

In addition to the motivation we provided above there are many desirable properties to include the regularization
penalty, many of which we will come back to in later sections. For example, it turns out that including the L2
penalty leads to the appealing max margin property in SVMs (See CS229 lecture notes for full details if you are
interested).

The most appealing property is that penalizing large weights tends to improve generalization, because it means
that no input dimension can have a very large in�uence on the scores all by itself. For example, suppose that we
have some input vector  and two weight vectors ,

. Then  so both weight vectors lead to the same dot product, but
the L2 penalty of  is 1.0 while the L2 penalty of  is only 0.5. Therefore, according to the L2 penalty the weight
vector  would be preferred since it achieves a lower regularization loss. Intuitively, this is because the weights in

 are smaller and more diffuse. Since the L2 penalty prefers smaller and more diffuse weight vectors, the �nal
classi�er is encouraged to take into account all input dimensions to small amounts rather than a few input
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dimensions and very strongly. As we will see later in the class, this effect can improve the generalization
performance of the classi�ers on test images and lead to less over�tting.

Note that biases do not have the same effect since, unlike the weights, they do not control the strength of in�uence
of an input dimension. Therefore, it is common to only regularize the weights  but not the biases . However, in
practice this often turns out to have a negligible effect. Lastly, note that due to the regularization penalty we can
never achieve loss of exactly 0.0 on all examples, because this would only be possible in the pathological setting of

.

Code. Here is the loss function (without regularization) implemented in Python, in both unvectorized and half-
vectorized form:

def L_i(x, y, W):

  """
  unvectorized version. Compute the multiclass svm loss for a single example (x,y)

  - x is a column vector representing an image (e.g. 3073 x 1 in CIFAR-10)
    with an appended bias dimension in the 3073-rd position (i.e. bias trick)

  - y is an integer giving index of correct class (e.g. between 0 and 9 in CIFAR-10)
  - W is the weight matrix (e.g. 10 x 3073 in CIFAR-10)

  """
  delta = 1.0 # see notes about delta later in this section

  scores = W.dot(x) # scores becomes of size 10 x 1, the scores for each class
  correct_class_score = scores[y]

  D = W.shape[0] # number of classes, e.g. 10
  loss_i = 0.0

  for j in range(D): # iterate over all wrong classes
    if j == y:

      # skip for the true class to only loop over incorrect classes
      continue

    # accumulate loss for the i-th example
    loss_i += max(0, scores[j] - correct_class_score + delta)

  return loss_i

def L_i_vectorized(x, y, W):
  """

  A faster half-vectorized implementation. half-vectorized
  refers to the fact that for a single example the implementation contains

  no for loops, but there is still one loop over the examples (outside this function)
  """

  delta = 1.0
  scores = W.dot(x)

  # compute the margins for all classes in one vector operation
  margins = np.maximum(0, scores - scores[y] + delta)

  # on y-th position scores[y] - scores[y] canceled and gave delta. We want
  # to ignore the y-th position and only consider margin on max wrong class

  margins[y] = 0
  loss_i = np.sum(margins)

  return loss_i

def L(X, y, W):
  """

  fully-vectorized implementation :
  - X holds all the training examples as columns (e.g. 3073 x 50,000 in CIFAR-10)

  - y is array of integers specifying correct class (e.g. 50,000-D array)
  - W are weights (e.g. 10 x 3073)

  """
  # evaluate loss over all examples in X without using any for loops

  # left as exercise to reader in the assignment

The takeaway from this section is that the SVM loss takes one particular approach to measuring how consistent
the predictions on training data are with the ground truth labels. Additionally, making good predictions on the
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training set is equivalent to minimizing the loss.

Practical Considerations
Setting Delta. Note that we brushed over the hyperparameter  and its setting. What value should it be set to, and
do we have to cross-validate it? It turns out that this hyperparameter can safely be set to  in all cases. The
hyperparameters  and  seem like two different hyperparameters, but in fact they both control the same tradeoff:
The tradeoff between the data loss and the regularization loss in the objective. The key to understanding this is
that the magnitude of the weights  has direct effect on the scores (and hence also their differences): As we
shrink all values inside  the score differences will become lower, and as we scale up the weights the score
differences will all become higher. Therefore, the exact value of the margin between the scores (e.g. , or

) is in some sense meaningless because the weights can shrink or stretch the differences arbitrarily.
Hence, the only real tradeoff is how large we allow the weights to grow (through the regularization strength ).

Relation to Binary Support Vector Machine. You may be coming to this class with previous experience with Binary
Support Vector Machines, where the loss for the i-th example can be written as:

where  is a hyperparameter, and . You can convince yourself that the formulation we presented in
this section contains the binary SVM as a special case when there are only two classes. That is, if we only had two
classes then the loss reduces to the binary SVM shown above. Also,  in this formulation and  in our formulation
control the same tradeoff and are related through reciprocal relation .

Aside: Optimization in primal. If you’re coming to this class with previous knowledge of SVMs, you may have also
heard of kernels, duals, the SMO algorithm, etc. In this class (as is the case with Neural Networks in general) we
will always work with the optimization objectives in their unconstrained primal form. Many of these objectives are
technically not differentiable (e.g. the max(x,y) function isn’t because it has a kink when x=y), but in practice this is
not a problem and it is common to use a subgradient.

Aside: Other Multiclass SVM formulations. It is worth noting that the Multiclass SVM presented in this section is
one of few ways of formulating the SVM over multiple classes. Another commonly used form is the One-Vs-All
(OVA) SVM which trains an independent binary SVM for each class vs. all other classes. Related, but less common
to see in practice is also the All-vs-All (AVA) strategy. Our formulation follows the Weston and Watkins 1999 (pdf)
version, which is a more powerful version than OVA (in the sense that you can construct multiclass datasets where
this version can achieve zero data loss, but OVA cannot. See details in the paper if interested). The last formulation
you may see is a Structured SVM, which maximizes the margin between the score of the correct class and the
score of the highest-scoring incorrect runner-up class. Understanding the differences between these formulations
is outside of the scope of the class. The version presented in these notes is a safe bet to use in practice, but the
arguably simplest OVA strategy is likely to work just as well (as also argued by Rikin et al. 2004 in In Defense of
One-Vs-All Classi�cation (pdf)).

Softmax classifier
It turns out that the SVM is one of two commonly seen classi�ers. The other popular choice is the Softmax
classi�er, which has a different loss function. If you’ve heard of the binary Logistic Regression classi�er before, the
Softmax classi�er is its generalization to multiple classes. Unlike the SVM which treats the outputs  as
(uncalibrated and possibly di�cult to interpret) scores for each class, the Softmax classi�er gives a slightly more
intuitive output (normalized class probabilities) and also has a probabilistic interpretation that we will describe
shortly. In the Softmax classi�er, the function mapping  stays unchanged, but we now interpret
these scores as the unnormalized log probabilities for each class and replace the hinge loss with a cross-entropy
loss that has the form:

All we have to do now is to come up with a way to find the weights that minimize the loss.
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where we are using the notation  to mean the j-th element of the vector of class scores . As before, the full loss
for the dataset is the mean of  over all training examples together with a regularization term . The function

 is called the softmax function: It takes a vector of arbitrary real-valued scores (in ) and squashes it

to a vector of values between zero and one that sum to one. The full cross-entropy loss that involves the softmax
function might look scary if you’re seeing it for the �rst time but it is relatively easy to motivate.

Information theory view. The cross-entropy between a “true” distribution  and an estimated distribution  is
de�ned as:

The Softmax classi�er is hence minimizing the cross-entropy between the estimated class probabilities (
 as seen above) and the “true” distribution, which in this interpretation is the distribution where all

probability mass is on the correct class (i.e.  contains a single 1 at the  -th position.).
Moreover, since the cross-entropy can be written in terms of entropy and the Kullback-Leibler divergence as

, and the entropy of the delta function  is zero, this is also equivalent to
minimizing the KL divergence between the two distributions (a measure of distance). In other words, the cross-
entropy objective wants the predicted distribution to have all of its mass on the correct answer.

Probabilistic interpretation. Looking at the expression, we see that

can be interpreted as the (normalized) probability assigned to the correct label  given the image  and
parameterized by . To see this, remember that the Softmax classi�er interprets the scores inside the output
vector  as the unnormalized log probabilities. Exponentiating these quantities therefore gives the (unnormalized)
probabilities, and the division performs the normalization so that the probabilities sum to one. In the probabilistic
interpretation, we are therefore minimizing the negative log likelihood of the correct class, which can be interpreted
as performing Maximum Likelihood Estimation (MLE). A nice feature of this view is that we can now also interpret
the regularization term  in the full loss function as coming from a Gaussian prior over the weight matrix ,
where instead of MLE we are performing the Maximum a posteriori (MAP) estimation. We mention these
interpretations to help your intuitions, but the full details of this derivation are beyond the scope of this class.

Practical issues: Numeric stability. When you’re writing code for computing the Softmax function in practice, the
intermediate terms  and  may be very large due to the exponentials. Dividing large numbers can be

numerically unstable, so it is important to use a normalization trick. Notice that if we multiply the top and bottom of
the fraction by a constant  and push it into the sum, we get the following (mathematically equivalent) expression:

We are free to choose the value of . This will not change any of the results, but we can use this value to improve
the numerical stability of the computation. A common choice for  is to set . This simply
states that we should shift the values inside the vector  so that the highest value is zero. In code:

f = np.array([123, 456, 789]) # example with 3 classes and each having large scores

p = np.exp(f) / np.sum(np.exp(f)) # Bad: Numeric problem, potential blowup

# instead: first shift the values of f so that the highest number is 0:
f -= np.max(f) # f becomes [-666, -333, 0]

p = np.exp(f) / np.sum(np.exp(f)) # safe to do, gives the correct answer

Possibly confusing naming conventions. To be precise, the SVM classi�er uses the hinge loss, or also sometimes
called the max-margin loss. The Softmax classi�er uses the cross-entropy loss. The Softmax classi�er gets its
name from the softmax function, which is used to squash the raw class scores into normalized positive values that
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sum to one, so that the cross-entropy loss can be applied. In particular, note that technically it doesn’t make sense
to talk about the “softmax loss”, since softmax is just the squashing function, but it is a relatively commonly used
shorthand.

SVM vs. Softmax
A picture might help clarify the distinction between the Softmax and SVM classi�ers:

Example of the difference between the SVM and Softmax classi�ers for one datapoint. In both cases we compute the same
score vector f (e.g. by matrix multiplication in this section). The difference is in the interpretation of the scores in f: The SVM
interprets these as class scores and its loss function encourages the correct class (class 2, in blue) to have a score higher by a
margin than the other class scores. The Softmax classi�er instead interprets the scores as (unnormalized) log probabilities for
each class and then encourages the (normalized) log probability of the correct class to be high (equivalently the negative of it to
be low). The �nal loss for this example is 1.58 for the SVM and 1.04 (note this is 1.04 using the natural logarithm, not base 2 or
base 10) for the Softmax classi�er, but note that these numbers are not comparable; They are only meaningful in relation to loss
computed within the same classi�er and with the same data.

Softmax classi�er provides “probabilities” for each class. Unlike the SVM which computes uncalibrated and not
easy to interpret scores for all classes, the Softmax classi�er allows us to compute “probabilities” for all labels. For
example, given an image the SVM classi�er might give you scores [12.5, 0.6, -23.0] for the classes “cat”, “dog” and
“ship”. The softmax classi�er can instead compute the probabilities of the three labels as [0.9, 0.09, 0.01], which
allows you to interpret its con�dence in each class. The reason we put the word “probabilities” in quotes, however,
is that how peaky or diffuse these probabilities are depends directly on the regularization strength  - which you are
in charge of as input to the system. For example, suppose that the unnormalized log-probabilities for some three
classes come out to be [1, -2, 0]. The softmax function would then compute:

Where the steps taken are to exponentiate and normalize to sum to one. Now, if the regularization strength  was
higher, the weights  would be penalized more and this would lead to smaller weights. For example, suppose that
the weights became one half smaller ([0.5, -1, 0]). The softmax would now compute:

where the probabilites are now more diffuse. Moreover, in the limit where the weights go towards tiny numbers due
to very strong regularization strength , the output probabilities would be near uniform. Hence, the probabilities
computed by the Softmax classi�er are better thought of as con�dences where, similar to the SVM, the ordering of
the scores is interpretable, but the absolute numbers (or their differences) technically are not.

In practice, SVM and Softmax are usually comparable. The performance difference between the SVM and
Softmax are usually very small, and different people will have different opinions on which classi�er works better.
Compared to the Softmax classi�er, the SVM is a more local objective, which could be thought of either as a bug or

λ

[1, −2, 0] → [ , , ] = [2.71, 0.14, 1] → [0.7, 0.04, 0.26]e1 e−2 e0

λ

W

[0.5, −1, 0] → [ , , ] = [1.65, 0.37, 1] → [0.55, 0.12, 0.33]e0.5 e−1 e0
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a feature. Consider an example that achieves the scores [10, -2, 3] and where the �rst class is correct. An SVM (e.g.
with desired margin of ) will see that the correct class already has a score higher than the margin compared
to the other classes and it will compute loss of zero. The SVM does not care about the details of the individual
scores: if they were instead [10, -100, -100] or [10, 9, 9] the SVM would be indifferent since the margin of 1 is
satis�ed and hence the loss is zero. However, these scenarios are not equivalent to a Softmax classi�er, which
would accumulate a much higher loss for the scores [10, 9, 9] than for [10, -100, -100]. In other words, the Softmax
classi�er is never fully happy with the scores it produces: the correct class could always have a higher probability
and the incorrect classes always a lower probability and the loss would always get better. However, the SVM is
happy once the margins are satis�ed and it does not micromanage the exact scores beyond this constraint. This
can intuitively be thought of as a feature: For example, a car classi�er which is likely spending most of its “effort”
on the di�cult problem of separating cars from trucks should not be in�uenced by the frog examples, which it
already assigns very low scores to, and which likely cluster around a completely different side of the data cloud.

Interactive web demo

We have written an interactive web demo to help your intuitions with linear classi�ers. The demo visualizes the loss functions
discussed in this section using a toy 3-way classi�cation on 2D data. The demo also jumps ahead a bit and performs the
optimization, which we will discuss in full detail in the next section.

Summary
In summary,

We de�ned a score function from image pixels to class scores (in this section, a linear function that depends
on weights W and biases b).
Unlike kNN classi�er, the advantage of this parametric approach is that once we learn the parameters we
can discard the training data. Additionally, the prediction for a new test image is fast since it requires a single
matrix multiplication with W, not an exhaustive comparison to every single training example.
We introduced the bias trick, which allows us to fold the bias vector into the weight matrix for convenience of
only having to keep track of one parameter matrix.
We de�ned a loss function (we introduced two commonly used losses for linear classi�ers: the SVM and the
Softmax) that measures how compatible a given set of parameters is with respect to the ground truth labels
in the training dataset. We also saw that the loss function was de�ned in such way that making good
predictions on the training data is equivalent to having a small loss.

We now saw one way to take a dataset of images and map each one to class scores based on a set of parameters,
and we saw two examples of loss functions that we can use to measure the quality of the predictions. But how do
we e�ciently determine the parameters that give the best (lowest) loss? This process is optimization, and it is the
topic of the next section.

Δ = 1

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo
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Further Reading
These readings are optional and contain pointers of interest.

Deep Learning using Linear Support Vector Machines from Charlie Tang 2013 presents some results
claiming that the L2SVM outperforms Softmax.

https://github.com/cs231n
https://twitter.com/cs231n
https://arxiv.org/abs/1306.0239

