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Basic Principles and Clinical Applications of Magnetic
Resonance Spectroscopy in Neuroradiology

Stephan Ulmer, MD,*† Martin Backens, PhD,‡ and Frank J. Ahlhelm, MD‡
Abstract: Magnetic resonance spectroscopy is a powerful tool to assist
daily clinical diagnostics. This review is intended to give an overview on
basic principles of the technology, discuss some of its technical aspects,
and present typical applications in daily clinical routine in neuroradiology.
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M agnetic resonance imaging (MRI) has become the imaging
modality of choice in neuroradiology because of its abil-

ity to provide high-resolution images of the gray and white
matter and also visualize pathologic changes. MR spectroscopy
(MRS)—as a noninvasive method—offers further information
about metabolic processes such as energy metabolism, neuronal
integrity, cell proliferation, and degradation as well as necrotic tis-
sue changes. Without the need for a contrast agent, chemical
structures and metabolites within the tissue can be measured and
analyzed. In vitroMRSwas performedmany years before conven-
tional MRI was implemented in daily clinical routine in the 1980s.
This review gives a short technical overview of MRS, introduces
typical clinical applications of the technique in daily routine in
neuroradiology, and discusses some of its limitations and pitfalls.

On the basis of the physical principles of proton nuclear
MRS (1H-NMR), absorption of an electromagnetic impulse of
an appropriate radiofrequency range generates different peak in-
tensities, in contrast to absorption frequency, which is influenced
by the molecular composition of the sample.1–3 MR spectroscopy
can detect metabolites at concentrations approximately 10,000
times lower than the abundant proton nuclei of fat and water mol-
ecules used in conventional MRI. In addition to hydrogen (1H),
MRS can generally be performed on many other nuclei or isotopes,
too, for example, (15N) nitrogen, (13C) carbon, (19F) fluorine, (23Na)
sodium, and (31P) phosphorus; however, the technique might be
hampered in some cases by its rather low sensitivity and low in vivo
concentrations, thus leading to poor signal strength (Table 1).

Thus, as of now, phosphorus is the only other nucleus that is
used for clinical applications. Phosphorus spectroscopy is techni-
cally challenging and generally used to investigate energy metab-
olism in muscle tissue but can also be performed to investigate the
heart, liver, and brain.

For routine clinical applications, 1H-NMR is best suited be-
cause of its concentration and resonance sensitivity. Furthermore,
spatial resolution is better in a shorter acquisition time than for
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other nuclei. 1H-MRS can be performed on a standard 1.5-T (or
3.0-T) scanner as a part of the routine protocol as no special hard-
ware is required, such as additional coils or rearrangements.5,6 The
main compounds in the human brain (Table 2) areN-acetyl-aspartate
(NAA), choline (Cho), and creatine (Cr).

The concentrations of these metabolites change depending
on the underlying (pathologic) condition (see below). In daily rou-
tine, ratios of various metabolites are created as it is challenging to
quantify metabolites accurately. Some metabolites can only be de-
tected when their concentrations are significantly elevated, such as
lactate in tumors or strokes, epilepsy, or mitochondrial patholo-
gies; glycine in nonketotic hyperglycinemia; guanidinoacetate in
guanidinoacetate methyltransferase deficiency; or elevated levels
of phenylalanine in phenylketonuria.7–11

Basic Physical and Chemical Principles of MRS
Isotopes with an odd number of protons or neutrons have an

intrinsic angular momentum, called spin, which is combined with
a nuclear magnetic moment. The rate of the spin precesssion is
characteristic when the probe is within a magnetic field, which
is known as Larmor frequency. The Larmor frequency ω is line-
arly dependent on the field strength B:

ω ¼ γ⋅ B

The coefficient γ, called the gyromagnetic ratio, is a charac-
teristic constant, which depends on the kind of nucleus. The
Larmor frequencies of various nuclei in a magnetic field of 1.5
T can be found in Table 1. Hydrogen, as the most commonly used
nucleus in clinical routine, has a Larmor frequency of 63.9MHz at
1.5 T. After generating an electromagnetic impulse at their Larmor
precession frequency (magnetic resonance condition), the nuclear
spins induce an MR signal of the same resonant frequency that
can be detected by the MR coil. Unlike MRI, a read-out gradient
is not applied in MRS. The frequency information is used to iden-
tify the different chemical compounds, instead of spatial informa-
tion as used in conventional MRI (Figs. 1 and 2).

The basic condition enablingMRS, in general, is the fact that
an atomic nucleus placed in a magnetic field is partly shielded by
the surrounding electron cloud. As a consequence, the local mag-
netic field at the site of the nucleus is slightly diminished depend-
ing on the exact composition of the electron cloud, which is
formed mainly by adjacent atomic bonds. Because of their spe-
cific molecular bond, proton spins in different molecules will ex-
perience different shielding of the magnetic field. According to
the relation ω = γ · B, changes in the magnetic field also alter
the resonance frequency. This effect is called “chemical shift.”
The absolute frequency shift Δω of the resonance frequency
caused by a shielding σ (eg, a specific molecular bond) is directly
proportional to the strength of the applied magnetic field B0:

Δω ¼ σ⋅ ω0 ¼ σ⋅ γ⋅ B0

The effective resonance frequency of a nuclear spinω can be
calculated as follows:

ω ¼ ω0 ‐Δω ¼ 1‐ σð Þ⋅ γ⋅ B0
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TABLE 1. Important Nuclei for In Vivo MRS4

Nucleus Larmor Frequency (1.5 T)
Relative Sensitivity

(Nucleus) Isotopic Abundance, %
Concentration In Vivo,

mmol/L
Relative Signal

In Vivo

1H (water) 63.9 1 99.98 100 000 100
1H (metabolites) 63.9 1 99.98 10 0.01
31P 25.9 0.066 100 10 0.0007
23Na 16.9 0.093 100 50 0.005
19F 60.1 0.83 100 <1 <0.001
13C 16.1 0.017 1.1 50 0.00001
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Usually, chemical shifts are described as relative values
(expressed in parts per million, ppm), which are independent of
the field being applied:

δ ¼ Δω=ω0

For protons within a water molecule, the chemical shift is
4.7 ppm; for protons within fat tissue, the chemical shift is approx-
imately 1.2 ppm, revealing a difference of 3.5 ppm. For a magnetic
field strength of 1.5 T, this corresponds to 225 Hz.

Magnetic resonance signals are a function of timewith expo-
nentially decreasing high-frequency oscillation (ie, free induc-
tion decay [FID]; Fig. 1A). After Fourier transformation of the
MR time signal, a specific frequency spectrum can be generated
(Fig. 1B). The MR spectrum is a plot of the signal intensity of
the previously defined voxel versus relative frequency shift δ.
Chemicals or metabolites within the voxel are represented by dif-
ferent peaks at specific frequencies. For historical reasons, the
direction of the frequency axis is chosen from right to left, that
is, higher chemical shifts can be found on the left side on the
MR spectrum.

Under ideal circumstances, each peak in an MR spectrum
can be attributed to a specific metabolite. Relative quantities of
these compounds can be calculated by determining the peak inte-
gral, that is, the area under the peak (Fig. 2).

There is no absolute value for these MR signals; thus, areas
under individual peaks are not very accurate and may not be rep-
roducible (see below). Therefore, relative quantification of me-
tabolite concentrations can be achieved by calculating ratios of
different peak integrals. It is quite difficult to determine absolute
concentrations of the metabolites and would require additional
measurements with phantom models as a reference. Although
the area under the spectral peak is proportional to the metabolite
concentration, the relationship is not immediate and depends on
TABLE 2. ImportantMetabolites of the Central Nervous System

Metabolites Chemical Shift, ppm
Interpretation/Marker/
Typically Found in

Water 4.70
Inositol (Ins, mI) 3.54 Glial cells
Cho 3.22 Cell membrane, cell

turnover
Cr 3.03 and 3.94 Energy metabolism
Glx 2.1-2.5 and 3.8 Neurotransmitter
NAA 2.02 Neuronal integrity
Alanine 1.5 Meningioma
Lactate 1.33 Anaerobic metabolism
Lipids 1.3-0.7 Necrosis; metastases
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multiple biophysical parameters, including both pulse sequence
parameters and metabolite relaxation times. Therefore, in clinical
practice, relative concentrations and metabolite ratios are gener-
ally sufficient.
Field Strength Issues
Asmentioned previously, plotting the signal intensity against

the frequency of a chemical or metabolite within a given voxel at
a certain magnetic field strength gives the MR spectrum. Higher
FIGURE 1. Magnetic resonance time signal. A, FID. B, Magnetic
resonance spectrum after Fourier transformation.

© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 2. Magnetic resonance spectroscopy and MRI reference images (localization of the voxel) in a healthy volunteer. Cr2 indicates
second peak of Cr.
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magnetic field strengths increase the absolute chemical shifts,
enabling a sharper delineation of the peaks within a spectrum.
The signal-to-noise ratio (SNR) correlates (approximately) line-
arly to the magnetic field strength; thus, doubling the magnetic
field strength from 1.5 to 3 T also increases the signal intensities
of the peaks. Signal-to-noise ratio is often defined as the height
of the largest metabolite peak divided by the root-mean-square
amplitude of the noise in the spectrum. However, with higher field
strengths, the susceptibility to field distortions caused by tissue in-
homogeneity and magnetic impurities is also stronger, which im-
pairs signal intensities. Thus, 3-T 1H-MRS demonstrated an only
49% to 73% SNR increase in the cerebral metabolite signal and a
slightly superior spectral resolution as compared with 1.5 T, but
only at short echo time (TE) in brain tumors. Indeed, the signal
and resolution were almost absent at intermediate TE. In their
study, Kim et al12 actually did not find any significant difference
in the metabolite ratios between the 2 field strengths.
Sequence Protocols
For spectroscopic data acquisition, either single voxel (SVS)

or multivoxel techniques (chemical shift imaging [CSI]) can be
used. Multivoxel techniques cover a much larger area, which is
helpful in visualizing lesions with various compounds or in meta-
bolic disorders. Both 2- and 3-dimensional techniques are avail-
able. However, the disadvantage of CSI is that the SNR is
significantly weaker than that of SVS, the signal being spread
among adjacent voxels. In addition, more time is required for
scanning. However, if a broader area needs to be covered, it is
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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quicker to scan than to perform several SVS measurements. In
SVS, usually cuboid voxels with a size of approximately 1.5 cm3

are used to achieve a sufficient SNR. Here, 2 main techniques
are used: stimulated echo acquisition mode (STEAM) and point-
resolved spectroscopy (PRESS). Previously, STEAM was the
only sequence that could be performed with short TE by which
metabolites with short T2 relaxation times could be detected, such
as inositol, glutamate, glutamine, and others. Today, short TEs can
also be used in PRESS. In addition, the SNR for STEAM is only
half that for PRESS, nor does STEAM show the useful lactate in-
version for TE = 135 milliseconds (see below); thus, PRESS is
now usually the preferred modality for spectroscopy.

Depending on the question being addressed, the TE is mod-
ified. Short-echoMRSwith a TE of 20 to 35 milliseconds is better
suited for detecting metabolites with short T2 relaxation times
such as glutamine, glutamate, myoinositol (mI), and most amino
acids, which are important for evaluating complex metabolic ab-
normalities. Long TE values are generally used for spectra to in-
vestigate NAA, Cr, and Cho concentrations.

Some metabolite peaks, for example, lactate, can change
their shape and may be inverted depending on the technique or
the TE value used at acquisition. At a low TE, the lactate double
peak is positive using STEAM and PRESS technique. Using an
intermediate TE of approximately 135 milliseconds, the lactate
doublet peak is inverted using PRESS technique and virtually
erased using STEAM technique. With a long TE (approximately
270 milliseconds), the lactate peak is again positive for both tech-
niques. The reason for these confusing variations is that the lactate
molecule has 2 different resonances, one at 1.3 ppm and another at
www.jcat.org 3
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4.1 ppm, arising from the protons in the methyl group (CH3) and
in the methine group (CH). The peak at 4.1 ppm is usually not vis-
ible in vivo because it is too close to the water peak. Because
of interactions between the 2 groups—called J-coupling—the
methyl resonance at 1.3 ppm is split into a doublet with a coupling
constant of J = 7.4 Hz. The corresponding difference in Larmor
precessional frequencies between the doublet components causes
a periodical change of inphase and antiphase conditions depend-
ing on the TE. Using PRESS, the doublet is inphase at TE = 1/
J = 135 milliseconds but inverted relative to the other (uncoupled)
resonances. At TE = 2/J = 270 milliseconds, the doublet is also
inphase but positive (not inverted). Signal variation in STEAM
techniques depending on the TE is substantially more difficult be-
cause multiple quantum effects need to be considered.

The concentration of water is 104 to 105 times higher than
any of the metabolites of interest. Thus, the water signal must be
adequately suppressed, which can be achieved using a chemically
selective saturation radiofrequency pulse applied at the water res-
onance before implementing the selected localization technique.13

Furthermore, shimming before the measurement gives a more ho-
mogeneous magnetic field within the voxels, reducing spectral
peak broadening and improving the SNR.

Because of the low sensitivity of NMR and the low concen-
tration of metabolites (approximately 1-10 mmol/L), multiple sig-
nal acquisitions generally need to be averaged to obtain sufficient
spectral quality.

If the 4 main peaks of a spectrum (Ins, Cho, Cr, and NAA)
are connected by a manually drawn line, the angle with respect
to the x-axis is 45° in healthy subjects, an angle referred to as
Hunter angle (Fig. 3). As a rule of thumb, that roughly applies
for spectra of the brain using STEAM and short TEs. However, as
the appearance of spectra is influenced by various factors, includ-
ing sequence parameters and localization, Hunter angle should
only be used with great caution.

Postprocessing
After acquiring an MR signal, several postprocessing proce-

dures are needed to qualitatively interpret and quantitatively ana-
lyze the MR spectra (FID; Fig. 1A). Nowadays, these steps are
fully or partially automated by the scanner evaluation software.
FIGURE 3. Hunter angle.

4 www.jcat.org

                   Copyright © 2015 Wolters Kluwer Health, Inc. Unauthorize
               This paper can be cited using the date of access and the un
Pathological conditions change spectra; thus, “normal” peaks
may be absent, or additional peaks can be depicted, which may re-
quire additional manual optimization in postprocessing. Particu-
larly, when large amounts of different spectra are acquired using
CSI, manual postprocessing can be rather demanding. In the first
step, theMRS signal intensity ismultiplied by a Gaussian or expo-
nential function to decrease noise. A minor disadvantage of this
filter process (“apodization”) is that the lines are slightly broad-
ened. This is followed by what is known as “zero filling,” that
is, the MRS signal is prolonged, resulting in a “smoother” appear-
ance of the MR spectrum.

The most important step in postprocessing, however, is
“Fourier transformation,” which transforms the MR time signal
into a frequency spectrum. After correcting baseline distortions,
phase shifting is performed as a final step to achieve a pure
absorption spectrum.

Characteristics Influencing Spectra
In addition to age (see below), other characteristics may

also influence the spectra, including topography or sex, although
the literature is somewhat incongruous in this regard. Neither
Komoroski and coworkers14 nor Raininko and Mattsson15 found
any differences between women and men, whereas Wilkinson
and coworkers16 found NAA and Cr to be higher in women than
in men compared with Cho being higher in men than in women.
Using a phantom, left-right asymmetries of up to 6.5% were ob-
served, which was even more pronounced in healthy volunteers
depending on the region of interest.17 Variations between the left
and right hemisphere were between 11% in the parietal lobe to
42% in the cerebellum for NAA-Cr. Maximum variations were
found in Cho-Cr ratios of up to 72% in the parietal lobe. Only
in the thalamus and cerebellum were no statistically significant
left-right asymmetries observed, whereas there was a significant
asymmetry for NAA-Cr in the parietal lobe, for Cho-Cr in the
occipital lobe, for Cho-Cr and NAA-Cr in the temporal lobe,
and for NAA-Cr in the frontal lobe.17 These regional variations
were also found by Komoroski and coworkers,14 with lower
values of Cho-Cr in the basal ganglia. Reproducibility represents
another major issue. According to both phantom studies and ex-
aminations in healthy subjects, there was significant variation
within runs and even more so in studies performed on separate
days, which ranged from 9% to 18% for individual metabolites
and from 10% to 26% for metabolite ratios in the parietal lobe.
Even in sequentially performed examinations in the same location
in 1 session, variations of up to 17% were observed for both me-
tabolites and ratios.18 All these sources of systemic error need to
be borne in mind when interpreting results. Motion of the head
or subject during the scan can further hamper the results. Physio-
logical brain motion is unlikely to significantly influence the find-
ings.19 However, further motion leads to voxel misregistration,
phase or frequency variations, phase dispersion, amplitude varia-
tion, and out-of-voxel contamination, all leading to line-shape de-
terioration and reduced SNR.19–21

Clinical Applications for MRS

Brain Development and Maturation
Avariety of metabolites can be measured usingMRS in vivo;

however, as voxels contain heterogeneous cell populations, these
metabolites may vary according to the chosen location and, thus,
combination of cell types. In the healthy adult brain at 1.5 T,
NAA (synthesized in brain mitochondria) shows the most promi-
nent peak at 2.02 ppm, followed by Cr at 3.03 (and 3.94) ppm and
Cho at 3.22 ppm.22,23 N-acetyl-aspartate is a marker for intact
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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neurons (also thought to be involved in myelinization) that is
not found in astrocytes or oligodendrocytes. Choline is found in
astrocytes and even more so in oligodendrocytes, as are both Cr
and NAA.24

Creatine (thought to represent energy metabolism) increases
rapidly before and around birth (at term24). During further brain
maturation, levels of NAA and Cr rise within the first 3 months
of life, and mI declines, whereas Cho (thought to represent mem-
brane, phospholipid, and myelin metabolism) shows a peak at
3 months with a decline thereafter toward early childhood.25 At
6 months old, NAA is the most prominent detectable marker.26–28

Choline decreases until the age of 3 years.26

In the healthy brain, lactate concentrations are below the de-
tectability of MRS. It is a terminal metabolite of glycolysis.
Whenever mitochondrial respiration is insufficient and energy is
dependent on glycolysis, lactate rises as a result of less efficient
energy production. It can be detected in the preterm (weeks
26-32) brain,29 concentrations increasing with decreasing gesta-
tional age and degree of growth restriction.30 The occipitoparietal
regions seem to be more vulnerable than the basal ganglia.31 In
preterm infants, NAA was significantly lower if white matter
abnormalities were present and lactate also correlated with the
Apgar score.32

During further maturation, only moderate changes are ob-
served in metabolites, including NAA (by approximately 50%
from infancy to adulthood) and Tau in gray matter. In white
matter, the total NAA concentration gradually increases during
childhood and adolescence by approximately 30%. In the cerebel-
lum, there is a developmental increase in NAA, whereas Tau, for
which overall concentrations are highest in the cerebellum, de-
creases. In the thalamus, the concentrations of tCr and Tau are
elevated in early infancy in comparison with constant levels in
children and adults, accompanied by a developmental increase
in tNAA.33 From adolescence to old age, NAA, mI, and glutamine/
glutamate (Glx) decrease.15

Noxa During Pregnancy
In children with fetal alcohol spectrum disorder, Cho (as a

marker of phospholipids and myelin metabolism) was reduced
as compared with controls. There was also a correlation between
reduced Cho and reduced brain volume, suggesting white matter
damage.34 Another study found elevated NAA concentrations,
probably as compensation in myelinization.35

In the children of mothers who smoked during pregnancy,
significantly lower concentrations of mI (as a marker for glial
cells) and Cr (a marker for energy metabolism, which is usually
a very stable metabolite in MRS) were found.36

Asphyxia
Lactate and reduced NAA were found in children with as-

phyxia, which correlated with a poor neurological outcome.37–41

As NAA is low at birth (see above), lactate seems to be more rel-
evant.42 As the end product of anaerobic metabolism, lactate can
persist in the brain. In children with neurodevelopmental impair-
ment, lactate was still found 1 year after perinatal asphyxia.43,44

Developmental Delay
Findings in children with developmental delay are not con-

gruent throughout the literature. Normal finding compared with
age-matched controls was reported.45,46 Other studies found de-
creases in the NAA-Cr ratio, a marker for immature or ceasing
neurons, and increased Cho-Cr as a marker for increased cell turn-
over.47 A reduction in NAA was also found in another study.48

Following up on children with idiopathic developmental delay,
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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NAA remained reduced at the age of 9 to 10 years.49 In children
with congenital heart disease, NAA increased significantly slower
during further development within the third trimester compared
with controls.50 There is further discordance in the literature with
regard to autism. Compared with controls, lower levels of NAA,
Cr, and Cho were found.51,52 In later childhood (at 9-10 years
old49) and in adulthood,53 this was no longer apparent. Other stud-
ies found increased values of mI and Cho but no significant differ-
ences in NAA compared with controls54 or even no evidence for
brain mitochondrial dysfunction in children with autism55; thus,
caution should be exercised in interpreting data concerning age-
dependent fluctuations in metabolite levels.56

Mitochondrial Disorders
In patients with mitochondrial myopathy, encephalopathy,

liver acidosis, and strokelike lesions, a significant Cho and NAA
reduction was found. Lactate was not present in normal-
appearing white matter.57 The authors discussed whether Cho
might represent a metabolic correlate for impairment or mainte-
nance of membrane metabolism due to reduced energy produc-
tion. Choline reduction could be reversed after short-term
treatment with dichloroacetate.58 Reduction in NAA represents
neuronal loss. In patients with Leigh syndrome, reduced levels
of NAA and Cr were noted, and lactate was observed in
affected areas.57,59,60

Leukodystrophies
In the differential diagnosis of leukodystrophies, MRSmight

be helpful; however, changes in the metabolite ratios or levels
are not specific for a certain disorder. Increased levels of mI and
lactate and reduced NAA levels have been reported in Alexander
disease.61,62 Increased levels of NAA have been found in Canavan
disease,63 but other studies did not find any significant changes.64

However, increased NAA is thought to be a biomarker for white
matter diseases such as Pelizaeus-Merzbacher disease and Canavan
disease.65 Increased levels of NAA and increased mI and Cr,
together with a reduction in Cho, were found in Pelizaeus-
Merzbacher disease.66 Both NAA and lactate levels were reduced
in Krabbe disease. Increased ratios of Cho-Cr were found in
Gaucher disease that correlated negatively with the impairment.67

Posttraumatic Changes
Posttraumatically, MRS may depict neuronal damage when

NAA levels are decreased.68,69 Furthermore, Cho was found to
be increased initially. Then, NAA increased, whereas Cho de-
creased over time.70 This opens new options in monitoring child
abuse (nonaccidental trauma), as NAAwas significantly decreased
in these children.71

Brain Tumors
One of the main applications of MRS in adults is still brain

tumor imaging. Initial experiments were performed in an animal
model in the late 1990s, later applying MRS in brain tumors in
humans in vivo. The animal model (C6 glioma) revealed an
NAA decrease, a Cho increase, and a peak in lactate and lipids.72

Avariety of groups then used MRS to further characterize human
brain tumors.73–78

In addition to detecting differences in the spectra of tumors
and normal brain parenchyma, MRS was increasingly used for
differential diagnosis of tumors. In general, tumors of glial origin
show increased Cho (increased turnover) compared with Cr and
a decrease in NAA due to neuronal loss. A ratio of 2:1 Cho-Cr
is taken for diagnosing high-grade gliomas, being a cutoff to
www.jcat.org 5
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distinguish them from low-grade lesions. Lactate and lipids are
only found in higher grade lesion due to necrosis and anaerobic
metabolism (Fig. 4). In metastasis (Fig. 5) and also in meningio-
mas (Fig. 6), NAA is usually only present if normal brain tissue
is incorporated within the voxel of interest.73,77,79–88

Distinguishing low-grade lesions can be difficult. However,
increased Cho was more likely to be found in WHO II lesions.89

Nonenhancing lesions in conventional MRI represent another
challenge. Nonenhancing high-grade lesions could be distinguished
FIGURE 4. Magnetic resonance images (A) and MRS (C, left) of a gliobl
increased Cho indicates cell proliferation. There are strong lipid peaks, wh
(B) and MRS (C, right) of a nonenhancing WHO grade III astrocytoma. C
metabolism (lac peak). N-acetyl-aspartate is reduced because of destruc
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from low-grade lesions by increased Cho and Cho-Cr ratios in
several studies.90–93

Contrast-enhancing lesions, on the other hand, can also be a
challenge as they could be lymphoma, glioblastoma, or metasta-
sis. Ratios of lactate-lipids–Cr may help to differentiate these tu-
mor types, with lymphoma having the highest values followed
by glioblastomas and then metastasis.94

Magnetic resonance spectroscopy has also been used for
predicting outcome in brain tumors. Lactate was found, for
astoma. Reduced NAA is found due to neuronal degradation;
ich are typical in high-grade tumors. Magnetic resonance images
holine is increased because of high cell turnover with anaerobic

tion of normal brain tissue.

© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 5. Magnetic resonance images (top row) and spectrum (bottom row) of metastasis from bronchial carcinoma. N-acetyl-aspartate
as a neural marker is reduced; Cho is highly increased. Succinate and lipid peaks (CH3 and CH2) can be depicted because of necrosis.
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example, in pontine gliomas with significantly worse outcome or
if Cho-NAA changed.83,95,96 In general, presence of lactate seems
to be a predictor for worse outcome.83,88,95,96

As we know from biopsy-proven studies in which samples
are taken from the rim of the resection cavity during tumor re-
moval, tumor borders as defined by conventional MRI do not re-
flect the real extent of a lesion—neither by an area of signal
intensity increase in T2-weighted images in low-grade lesions
nor by the contrast-enhancing part of high-grade tumors. Mag-
netic resonance spectroscopy was also able to define these areas
of tumor infiltration beyond the conventional imaging findings.97

In addition to initial diagnostic imaging, MRS is also used
for follow-up examinations. Response to treatment could be pre-
dicted by a decrease in Cho-Cr at 14-month follow-up.98 Before
MRI or clinical deterioration, these changes can be depicted by
MRS99 and might be used to estimate response to therapy, overall
survival, or time to progression.100 Patients under antiangiogenic
drugs have also been monitored using MRS. In patients in whom
the decline in Chowas stronger, NAA increased, and lactate/lipids
decreased, overall survival was higher.101
© 2015 Wolters Kluwer Health, Inc. All rights reserved.

                    Copyright © 2015 Wolters Kluwer Health, Inc. Unauthoriz
                This paper can be cited using the date of access and the un
Magnetic resonance spectroscopy can also help with another
common diagnostic problem during follow-up monitoring of pa-
tients with brain tumor: distinguishing recurrent disease from
contrast-enhancing postradiation necrosis after radiation therapy.
Compared with radiation necrosis, Cho-Cr was significantly in-
creased in recurrent tumors,102,103 with a cutoff of 1.8.104

The implementation of intraoperative MRI has opened new
fields of research and clinical applications. At any time during
the resection of a brain lesion, an early resection control can be
performed. Such imaging is, however, hampered by the fact that
surgical manipulation temporarily disrupts the blood-brain barrier,
causing contrast enhancement of the rim of the resection cavity.
Intraoperative dynamic susceptibility contrast-enhanced MRI105,106

could reliably depict residual tumor. Magnetic resonance spec-
troscopy can also identify residual tumor intraoperatively with
a sensitivity of 85.7% and a specificity of 100%.107

Parkinson Disease
In Parkinson disease (PD), any additional imaging modality

is highly appreciated to facilitate diagnosis as there are no definite
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FIGURE 6. Magnetic resonance images (top row) and MRS (bottom row) of a meningioma. As this is an extra-axial lesion, the neuronal
marker NAA is missing. There is almost no Cr and a small lipid peak (CH2) but elevated Glx components (B).
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signs in conventional MRI. Compared with controls, Cr was sig-
nificantly lower in the substantia nigra in PD.108 Other studies found
NAA-Cr to be significantly reduced in the substantia nigra,109,110

most likely as a sign of neuronal loss.
This is also true for other neurodegenerative disorders, such

as multisystem atrophy and progressive nuclear palsy,111 where
NAA was found to be significantly decreased in the pallidum,
putamen, and lentiform nucleus of these patients. Mapping gluta-
mate and glutamine in the lentiform nuclei demonstrated reduced
levels, suggesting that more than half of the dopaminergic neu-
rons in the nigrostriatal projection must be lost before the onset
of PD.112 Mitochondrial dysfunction in mesostriatal neurons is
thought to represent an early change in the pathogenic cascade
in PD. Reduction of adenosine triphophosphate and phosphocrea-
tine as final acceptors of energy from mitochondrial oxidative
phosphorylation was found in the putamen and midbrain.113

Reduced NAA-Cr and increased Cho-Cr and mI were found in
the posterior cingulated gyrus in patients with PD compared with
controls114,115 as was a lower Glu-Cr ratio than in controls.116 The
8 www.jcat.org
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NAA-Cr ratio was significantly lower in the pre-supplementary
motor area in PD than in controls, too.117

Parkinson disease may show different clinical manifesta-
tions. Some are associated with cognitive decline. NAA-Cr was
reduced in the occipital lobe of PD with mild cognitive impair-
ment (MCI) compared with healthy controls. The Cho-Cr ratio
was higher in the posterior cingulated gyrus in PD with MCI than
in PD without MCI.118 Magnetic resonance spectroscopy in the
right dosolateral prefrontal cortex yielded reduced NAA ratios in
patients with MCI; NAA in the left hippocampus was signifi-
cantly reduced if they experience dementia.119 Lower NAA-Cr
andGlu-Cr ratios were found in PDwith dementia than in controls
in the posterior cingulated gyrus, and lower Glu-Cr ratios were
found in PD with dementia than in PD without dementia.114 Fur-
thermore, the ratio of NAA-Cr correlated with the mental status in
PD with dementia.115 In the occipital region, NAA levels were
significantly reduced in PD with dementia compared with PD
without dementia and controls, which again correlated with neu-
ropsychological status.120
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
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Stroke
AlthoughMRS does not play any role in decision making for

further patient management in an acute stroke setting,121 it may
help to further understand underlying changes in the course of
the disease. As knowledge of early changes after stroke onset is
based on animal models for the most part, data for humans are
limited. N-acetyl-aspartate is a key player in both the infarcted
and noninfarcted areas. Indeed, as a marker of neuronal integrity,
NAA decreased rapidly within the first 6 hours after the insult in
an animal model followed by a slower decay thereafter.122,123

On the other hand, however, recovery of NAA has been reported
in an animal model with transient MCA occlusion despite histo-
logically proven, persistent neuronal loss of up to 90% in the
ischemic core.124 As a marker, lactate is usually not present in
healthy controls and increases as an end product of anaerobic gly-
colysis (Fig. 7).121 However, in transient ischemia, additional
metabolites such as glutamine and glutamate may predict irrevers-
ible lesions already 3 hours after ischemia.125 In patients with mo-
tor impairment due to subcortical stroke in a chronic state, NAA
FIGURE 7. Magnetic resonance images (top row) and MRS (bottom row
The large lactate peak indicates anaerobic metabolism.
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was significantly reduced in the corresponding M1 compared
with controls. Furthermore, the unaffected contralateral side
also demonstrated lower NAAvalues than in controls. Myoinosi-
tol as a marker of glial involvement was increased.126 N-acetyl-
aspartate was also found to be lower in ipsilateral premotor
areas.127 Reduced blood supply caused by stenosis or occlusion
of supplying vessels resulting in transient neurological deficits al-
ready leads to a reduction of NAA in the noninfarcted centrum
semiovale.128 Altered NAA was furthermore found to be more
likely in patients with poorer recovery after stroke.127

Infections

Human Immunodeficiency Virus
Some human immunodeficiency virus research has included

MRS. As early as 8 days after infection, MRS was performed and
demonstrated increased Cho-Cr levels as signs of acute infection,
frequently accompanied by headache during the acute retroviral
syndrome.129 Furthermore, Cho-Cr was increased in untreated
) of ischemia. Reduced NAA is depicted because of neuronal loss.
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patients with lower CD4+ lymph counts130 and decreased after
therapy.131 N-acetyl-aspartate was found to be reduced already
early during the course of the infection132 and was even more pro-
nounced with greater human immunodeficiency virus viremia.130

In the first year of infection, increased Cho-Cr levels and reduced
NAA levels were found that were correlated to increased CD16+

count.133 Despite therapy, there are reports of a persistent NAA re-
duction in chronically ill but stable patients,134 whereas signifi-
cantly decreased ratios were only found in patients with severe
cognitive decline.135

Closing Remarks
Magnetic resonance spectroscopy is a powerful noninvasive

tool that can assist clinical MRI. Although, in clinical routine,
there are no absolute values and changes in certain metabolites
that are not specific for certain disorders or tumor types for the
most part, a change in their ratios compared with the healthy brain
or during the course of the disease renders clinical imaging, and
thus diagnosis, more valuable.
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