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Artificial Intelligence for MR Image
Reconstruction: An Overview for Clinicians

Dana J. Lin, MD,1 Patricia M. Johnson, PhD,2 Florian Knoll, PhD,2 and Yvonne W. Lui, MD1*

Artificial intelligence (AI) shows tremendous promise in the field of medical imaging, with recent breakthroughs applying
deep-learning models for data acquisition, classification problems, segmentation, image synthesis, and image reconstruc-
tion. With an eye towards clinical applications, we summarize the active field of deep-learning-based MR image recon-
struction. We review the basic concepts of how deep-learning algorithms aid in the transformation of raw k-space data to
image data, and specifically examine accelerated imaging and artifact suppression. Recent efforts in these areas show that
deep-learning-based algorithms can match and, in some cases, eclipse conventional reconstruction methods in terms of
image quality and computational efficiency across a host of clinical imaging applications, including musculoskeletal,
abdominal, cardiac, and brain imaging. This article is an introductory overview aimed at clinical radiologists with no experi-
ence in deep-learning-based MR image reconstruction and should enable them to understand the basic concepts and cur-
rent clinical applications of this rapidly growing area of research across multiple organ systems.
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Introduction
The use of artificial intelligence (AI) in medical imaging is
not new. In fact, machine learning, a subset of AI, has been
used for computer-aided diagnosis and detection (CAD) in
radiology for decades.1–3 Recent advances in computer
vision—specifically, convolutional neural networks (CNNs)
of deep learning—are now leading to exciting breakthroughs
across diverse areas of medical imaging, including disease clas-
sification, anatomic segmentation, image synthesis, as well as
image reconstruction.4–6

The process of transforming magnetic resonance imag-
ing (MRI) data measured in the Fourier domain (k-space) to
the image domain (MR image reconstruction) lies at the very
heart of how MRI works and has been a rich area of research
since the advent of MRI: varying k-space trajectory, parallel
imaging, compressed sensing, etc. Recent applications of
deep-learning-based tools to aid in reconstruction problems
are poised to further revolutionize this area.7

For this review, we performed PubMed searches for vary-
ing combinations of the following keywords: “deep learning,”
“convolutional neural network,” “MRI,” “reconstruction,” “k-
space,” which yielded in aggregate 139 articles. Works per-
taining to image reconstruction from k-space to image space

were selected, which is described in more detail in a later
section of this review. The intention of this article is not to be
exhaustive or overly technical but to feature cutting-edge, illus-
trative, and representative examples for the clinical reader hop-
ing to understand the general concepts and clinical applications
in this area of rapidly growing research.

Here we review, with a clinical audience in mind, the
application of these deep-learning-based approaches to the
unique problems of MR image reconstruction. First, we
review the basics of a convolutional neural network (CNN).
Then we summarize the range of clinical applications of
CNNs to sparse sampling in static and dynamic imaging
across multiple organ systems. Reducing artifacts such as
motion and ghosting are then considered, followed by appli-
cations in positron emission tomography (PET)/MRI. This
review concludes with a discussion of the challenges and limi-
tations of these approaches, as well as a map for future
research directions.

Convolutional Neural Networks
Current deep-learning-based image reconstruction uses super-
vised learning techniques with CNNs.8–13 Supervised learn-
ing refers to techniques where a machine-learning model
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learns to map an input to an output by training on a large set
of given input and output pairs (training data).14 CNNs are
deep-learning models that are designed to handle data
arranged in arrays such as that encountered in imaging data.
CNNs are made up of layers of learnable convolutional ker-
nels; the elements of each kernel are trainable weights that
extract features from the previous layer. CNNs used for image
reconstruction are typically encoder–decoder-style network
architectures so that the output yields an image: the encoder
portion of the network learns a compressed representation of
the input data, and the decoder portion of the network recon-
structs an output image from the compressed representation.
For applications in MR image reconstruction, the models cur-
rently being used are high-capacity, multilayer CNNs; train-
ing data consist of undersampled, corrupted, or otherwise
nonoptimal k-space data as inputs and corresponding target
images reconstructed using current standard algorithms as
outputs.

A full review of how CNNs work is beyond the scope
of this review and we refer the reader to a few recent
resources on the topic.14–17 We include here an example
using natural images (not MRI data) in order to illustrate the
main components of the general form of the encoder–decoder
CNN network architecture, currently popular in MR image
reconstruction deep-learning methods (Fig. 1). In this exam-
ple, a CNN is developed to colorize an image. The model
learns realistic colors for various parts of the image by training
on many input (black and white image) / target output (color
version of the same image) pairs that it is provided. Each time
an input image is fed into the network, the network’s output
is compared to the target output by calculating a measure of
error based on the difference between network and target out-
puts; such an error measure can be defined variously and is
called a loss function. In one of its most basic forms, compar-
ing one image to another, a pixelwise measure of mean
squared error (MSE) can be used as a loss function. As the
model is exposed to more examples, the weights in the model
are continuously updated in an effort to minimize the loss
function. This is achieved with a gradient descent optimiza-
tion algorithm and backpropagation.18 If there are enough

training data that broadly represent the range of potential
inputs, the accuracy of the model improves iteratively to a
point where we hope it will perform well on unseen data.

MRI Reconstruction
Current deep-learning-based solutions in MRI for problems
of artifact reduction and motion correction generally fall into
two categories: deep-learning-based image reconstruction and
deep-learning-based image postprocessing. Deep-learning-
based image reconstruction methods, which form the focus of
this review, use multicoil complex (magnitude and phase) raw
data. On the other hand, there are also a significant number
of efforts using deep-learning-based image postprocessing
methods on coil-combined magnitude images. Postprocessing,
as defined here, is performed to enhance the image quality of
an already reconstructed image. The two general approaches
are both currently being explored to address similar problems
in MRI9,19–23 and ultimately may be complementary. The
two approaches have different strengths: image reconstruction
methods have the potential to tap an inherently richer corps
of information that include phase and coil sensitivity data,
whereas postprocessing methods take advantage of the sim-
plicity of the inputs as well as a larger potential pool of train-
ing data and potentially less dependence on acquisition
parameters and hardware. Thus, it is important to note that
the two general approaches differ and are not interchangeable
(Fig. 2). The works included here relate to deep-learning
methods that tackle improving MR image reconstruction
quality.

Deep Learning in Sparse Sampling
MRI is an inherently slow imaging modality, limited tradition-
ally by Nyquist sampling requirements. The problems of long
acquisition times include: increased vulnerability to artifacts
arising from motion, decreased patient comfort and the ability
to tolerate imaging, and increased fixed costs associated with
individual imaging studies resulting in an overall reduction in
access to imaging at a population level. However, with conven-
tional reconstruction procedures, sub-Nyquist sampling results

FIGURE 1: Example of a CNN to predict image colors. The CNN takes the input image and estimates the red, green, and blue
components of the image, based on learned features extracted from the image by the convolution kernels. The square grids
represent convolution kernels, which are made up of trainable weights. Each voxel in a feature map is the result of a convolution
operation applied to the previous layer (illustrated by the connecting lines). An image processing CNN typically will have an
encoder–decoder-style architecture, which contains pooling layers followed by upsampling layers. In this didactic example, the
network has four convolutional layers as well as a pooling layer (encoding) and an upsampling layer (decoding). The CNN ultimately
learns to synthesize a color image from a black-and-white image given many training pairs.
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in aliasing. Thus, it is no surprise that from the very advent of
MRI, accelerating image data acquisition has been an active
area of research.

A major development in accelerated acquisition is paral-
lel imaging (PI).24–26 With PI techniques, the sensitivities of
multiple receive coils provide additional information for the

FIGURE 2: Example illustrating the difference between image postprocessing and image reconstruction of a 4× accelerated T2-
weighted brain image. These results were obtained using a convolutional neural network for image reconstruction4 and a modified
version of this network not utilizing the raw data for image postprocessing. The fully-sampled reference is shown in (a), and the
zero-filled reconstruction in (b). The image postprocessing result is shown in (c) and the reconstruction result is shown in (d). The
absolute errors are shown in (e) and (f). The displayed values are structural similarity index (SSIM)60 —a measure of similarity
between the network output and the target, in this case the fully-sampled image (a). SSIM values range from 0–1, where 1 indicates
perfect agreement. In this example of generating high-quality images from undersampled data, the result obtained from the image
reconstruction tool utilizes information from the raw data and outperforms the postprocessing tool. The reconstruction has fewer
residual artifacts and less blurring with better preservation of important structures such as the globus pallidus. It has not been
established in the literature whether image reconstruction will always outperform image postprocessing, or vice versa, in other
applications.
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reconstruction, allowing for successful reconstruction from
sparser sampling. In brief, two common PI methods are gen-
eralized autocalibrating partial parallel acquisition (GRAPPA),
which is applied in k-space as an interpolation procedure,24

and sensitivity encoding (SENSE), which is applied in image
space using explicitly calculated coil sensitivity maps.25 Utiliz-
ing prior information in the form of regularization to solve an
undersampled reconstruction is a very common method of
reconstruction, one simple example being partial Fourier.
A particularly successful method for accelerating MR image
data that uses a sparsity prior and incoherent sampling is
compressed sensing (CS).27 CS reconstruction is an extension
of traditional iterative reconstruction methods, which estimate
images from undersampled data by enforcing data consistency
and utilizing prior information in the form of a regularizer.
Utilizing prior information in the reconstruction provides a
constraint on the optimization and ultimately results in a bet-
ter solution to the ill-posed reconstruction problem. Examples
of this prior information are the assumptions that medical
images are compressible (ie, sparse in some spatial transform
domain) and piecewise constant.

Unfortunately, the reconstruction problems that PI and
CS methods are designed to solve are themselves time-con-
suming. This is due in part to the fact that PI and CS
approaches treat every examination and reconstruction task as
a new, independent optimization problem. While reconstruc-
tion can be done offline, ultimately clinical scenarios require
speed for the reconstruction of individual scans. Deep-
learning methods are useful because they perform the optimi-
zation over many training images prior to solving the recon-
struction for any particular given image. They can take
advantage of common features of anatomy as well as the
structure of undersampling artifacts that are present across the
training images. With deep-learning reconstruction, the opti-
mization process is effectively then decoupled from the time-
sensitive image reconstruction process for each individual
study. Thus, for a new scan, unlike CS reconstructions,
which each require lengthy computation time, deep-learning-
based models can complete the reconstruction in seconds. It
is for these reasons that several groups are now investigating
the use of deep-learning-based approaches to achieve acceler-
ated, high-quality MRI reconstruction. Several techniques use
deep learning to learn more effective regularization terms
(prior information), and the approaches are derived from the
concepts of GRAPPA, SENSE, and CS. Like PI, deep-
learning techniques for reconstruction of sparsely sampled
data can be applied both in k-space or in image space.

Static Imaging
The variational network (VN),28 the model-based deep-
learning architecture (MoDL),29 and deep density priors
(DDP),30 are all deep-learning-based extensions of traditional
iterative reconstructions. Traditional iterative reconstruction

techniques, including CS, exploit prior information to com-
pensate for missing k-space data; this information is applied
in the form of a regularization term. Deep learning provides a
method of learning this regularization term from a large
amount of existing image data. Deep-learning methods solve
the image reconstruction problem from the undersampled k-
space by utilizing the additional spatial encoding offered by
multiple receive coils, enforcing consistency with acquired
data, and applying a trained CNN as the regularization term.
The CNN is trained with fully-sampled and corresponding
retrospectively undersampled data as training pairs. The VN,
MoDL, and DDP methods have been successfully used to
accelerate MR image reconstructions. Specifically, MoDL and
DDP have been applied in brain imaging29,30 and the VN in
both MSK and abdominal imaging.10,28 In the following sec-
tions, we review some of the clinical applications and clinical
uses of deep-learning-based models for MR image
reconstruction.

Brain Imaging
In neuroimaging, accelerated imaging can be especially useful
in patients with altered mental status whose motion may
compromise image quality or in longer imaging protocols
with multiple sequences that can each increase the total scan
time. Aggarwal et al proposed a model-based approach for
image reconstruction using deep learning called MoDL29 in
the brain and showed superior performance of this algorithm
in terms of peak signal-to-noise ratio (SNR) when compared
to CS across a wide range of acceleration factors (from
2 to 20).

Instead of using paired datasets of undersampled and
fully sampled images, Tezcan et al proposed an alternative
approach using unsupervised deep learning30 and applied the
method to a publicly available dataset of T1-weighted images
of the brain, multicoil complex images from healthy volun-
teers, and images with white matter lesions with resultant
visually high-quality reconstructions and low root mean
square error (RMSE) values that were superior to existing
deep-learning methods. Importantly, on images with white
matter lesions, the method was able to faithfully reconstruct
the lesions. In addition to not requiring paired datasets of
undersampled and fully sampled images, another advantage of
this method was less sensitivity to acquisition specifications
such as sampling parameters, coil settings, and k-space
trajectories.

Musculoskeletal Imaging
In musculoskeletal MRI, patients with pain or limited range
of motion can have difficulty maintaining an optimal imaging
position. At the same time, however, musculoskeletal imaging
is extremely demanding in terms of resolution, sharpness, and
image quality. Accelerated acquisitions have the potential to
minimize the need for repeat sequences and patient recalls for
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poor image quality. In Hammernik et al, a VN was applied
to a clinical knee MRI protocol.28 Testing various accelera-
tion factors and sampling patterns using both retrospectively
and prospectively undersampled MRI data, they showed that
VN reconstructions outperform combined parallel imaging
and compressed sensing (PI-CS) based on quantitative error
measures like the structural similarity index (SSIM) as well as
in a clinical reader study. SSIM is a measure of similarity
between the network output and the target image obtained
from the coil-sensitivity combined fully sampled reconstruc-
tion, where values range from 0 to 1, where 1 indicates per-
fect agreement. VN results for 4-fold acceleration of a clinical
knee and ankle protocol are shown in Fig. 3.

Abdominal Imaging
Acquisition acceleration has always been imperative in
abdominal MRI due to the challenges of cardiac and respira-
tory motion and the limitations of patient breath-holds. Chen
et al used a VN approach to accelerate the reconstruction of
variable-density single-shot fast spin-echo (SSFSE) sequences
to improve overall image quality and increase the perceived
SNR and sharpness, compared to conventional PI-CS recon-
struction.10 More recent work by the same group explored
accelerated reconstruction of wave-encoded SSFSE imaging.
While wave-encoded SSFSE improves image sharpness and
reduces scan time compared to conventional SSFSE, this
comes at the cost of the increased computation time necessary
for self-calibration and reconstruction. Chen et al showed that

a deep-learning-based pipeline of trained self-calibration and
reconstruction neural networks could decrease computation
time and perceived noise for clinical abdominal non-Cartesian
wave-encoded SSFSE imaging while maintaining image con-
trast and sharpness when compared to conventional self-
calibration and PI-CS reconstruction.31

Cardiac Imaging
Cardiac MRI, specifically coronary MR angiography (MRA),
provides its own challenges, with motion inherent to the
organ of interest as well as the requirement of extremely high
spatial resolution. Therefore, evaluation of coronary artery
luminal stenosis has traditionally required long, gated acquisi-
tions. Fuin et al used a VN undersampled reconstruction
approach to obtain free-breathing motion-compensated
whole-heart 3D coronary artery MRA images,32 demonstrat-
ing improved image quality when compared to zero-filled and
CS reconstructions (Fig. 4). Using the VN approach, the
authors were able to obtain high-resolution images (1.2 mm3

isotropic resolution) with substantially shorter scan times
(acquisition time of ~2–4 minutes) and rapid computational
speed (reconstruction time of ~20 seconds) compared with
wavelet-based CS (average reconstruction time of 5 minutes).

Robust Artificial-Neural-Networks for k-Space
Interpolation (RAKI)
Similar to PI methods that can be applied in both image
space (SENSE) and k-space (GRAPPA), deep-learning tech-
niques for image reconstruction can also be applied in both

FIGURE 3: From left to right: A single slice of the reference, zero-filled, PI-CS, and VN reconstructions of a sagittal, proton density-
weighted, fat-suppressed ankle image (top), and a coronal proton density-weighted knee image (bottom). The displayed SSIM was
calculated for the presented slice. The VN reconstruction has less noise amplification and residual artifact than the PI-CS
reconstruction. The sequence parameters were as follows: ankle: sagittal fat-saturated proton-density (PD-FS): TR = 2800 msec,
TE = 30 msec, turbo factor (TF) = 5, matrix size = 384 × 384, in-plane resolution 0.42 × 0.42 mm2, slice thickness = 3.0 mm; knee:
coronal PD: TR = 2750 msec, TE = 32 msec, TF = 4, matrix size = 320 × 320, in-plane resolution = 0.44 × 0.44 mm2, slice
thickness = 3.0 mm.
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domains. The methods described previously apply CNNs in
image space; it is also possible for deep-learning techniques
to be applied in k-space. A technique called robust artificial-
neural-networks for k-space interpolation (RAKI)33 —a
deep-learning extension of GRAPPA—uses the fully sam-
pled center of k-space and interpolation to estimate
unsampled k-space lines. However, RAKI uses CNNs—
trained from the fully-sampled k-space center—as the inter-
polation function. Akcakaya et al demonstrated that RAKI
outperforms traditional GRAPPA reconstruction for cardiac
and brain imaging, particularly at high accelerations (rates of
5–6).33 Example results using RAKI in simultaneous
multislice (SMS) echo-planar images (EPI) of the brain are
shown in Fig. 5. A unique aspect of this method is that it is
scan-specific; the CNN is trained from the center k-space
lines of the same scan, therefore obviating the requirement
of large training sets.

Generative Adversarial Networks (GANs)
A major challenge in deep learning is how best to define the
loss function. In image reconstruction problems, minimizing
a pixelwise loss metric such as MSE does not always result in

clinically useful or optimally realistic-appearing images; for
example, images can achieve low overall MSE but also be
diagnostically useless if they have high accuracy everywhere
except in small but anatomically critical regions. Using deep-
learning reconstruction methods tried thus far, the resulting
images often appear oversmoothed, rendering such images
easily distinguishable from those reconstructed conventionally
(Fig. 6). It is not yet clear whether and how such differences
may impact diagnosis; however, in practice this may lead to
lower radiologist confidence in terms of clinical interpretation
and could hinder adoption of these techniques to clinical
practice.

As a result, some groups have explored the use of
GANs,13,34,35 which incorporate a learned loss function. A
GAN consists of two interacting networks: a generator and a
discriminator, where the generator is an image reconstruction
network like those previously discussed and the discriminator
is a classifier network trained to distinguish between output
from the generator and a true target image. The error in the
discriminator (termed the adversarial loss) becomes an addi-
tional loss term in the optimization problem, which then
enforces the generation of images that most closely mimic

FIGURE 4: Coronary MR angiography (CMRA) images reformatted along the left anterior descending and right coronary arteries for
two representative healthy subjects. Acquisitions were performed with isotropic resolution 1.2 mm3 and 100% respiratory scan
efficiency (no respiratory gating). Prospective undersampled acquisitions with acceleration factors 5× (first row) and 9× (second row)
are shown. Images were reconstructed using a Wavelet-based compressed-sensing reconstruction (CS) and a multiscale variational
neural network (MS-VNN) reconstruction framework. Corresponding (consecutively acquired) fully-sampled acquisitions are shown in
the last column for comparison. MS-VNN provides higher image quality than CS for both acceleration factors, achieving similar
image quality to the fully-sampled reference. The reconstruction of a whole 3D CMRA volume took �14 seconds with MS-VNN. In
comparison, the reconstruction for Wavelet-based CS was 5 minutes on average. Figure courtesy of Claudia Prieto.
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the appearance of standard images. The generator and dis-
criminator are trained simultaneously, where the objective of
the generator is to at once minimize the pixelwise loss metric
while maximizing the adversarial loss, and the objective of the
discriminator is to distinguish between generator output
images and target images and minimize the adversarial loss.
This concept is illustrated in Fig. 7.

Automap
Automap36 is a technique that learns the entire reconstruction
procedure for undersampled data and makes no assumptions
regarding physical reconstruction models. While both VN
and automap have k-space input and image output, automap
additionally learns the Fourier transform and coil
combination—the complete mapping—whereas VN does

FIGURE 5: GRAPPA (top) and RAKI (bottom) reconstruction of SMS-EPI of the brain. SMS imaging acquires multiple slices at the
same time (16 in this example) and is traditionally reconstructed with GRAPPA. RAKI reconstruction of SMS-EPI brain images
outperforms GRAPPA reconstruction with decreased noise.61 Figure courtesy of Mehmet Akcakaya.

FIGURE 6: Example of oversmoothing from deep-learning reconstruction. Sagittal fat-saturated proton density-weighted images of
the ankle of the fully sampled reference (left column) and the VN reconstruction (right column) demonstrate the oversmoothed
appearance that can occur with these deep-learning reconstruction methods, rendering such images easily distinguishable from
those reconstructed conventionally. Note the loss of detail of the normal trabecular architecture that is present generally across the
entire image and the decreased conspicuity of the focal talar dome bone marrow edema (arrows) on the VN reconstructed image
(bottom right). The bottom images are cropped and magnified from corresponding images in the top row.
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not. The automap technique was applied to several complex
and traditionally time-consuming reconstruction tasks includ-
ing non-Cartesian and undersampled Cartesian reconstruction
in brain images. The authors reported comparable or superior
image quality compared with conventional methods, although
using far shorter computation time. Due to the global nature
of the Fourier transform, the technique requires a fully con-
nected layer before the CNN. A fully connected layer con-
nects each element of the input k-space to each element of
the first network layer and substantially increases the total
number of model parameters. This puts some limitations on
the matrix size of images that can be reasonably processed.
Additionally, there are overall limitations to flexibility of the
network, as the network is trained for specific k-space
locations.

Dynamic Imaging
Deep-learning-based reconstruction approaches to sparsely
sampled k-space have also been applied to dynamic MRI, spe-
cifically cardiac imaging. The temporal component of
dynamic imaging lends itself well to deep-learning reconstruc-
tion applications. Schlemper et al developed a deep cascade of
CNNs to reconstruct dynamic sequences of 2D cardiac MR
from undersampled data, showing that their proposed
method outperformed existing state-of-the-art 2D CS
approaches in terms of both reconstruction error and recon-
struction speed.37 When reconstructing individual frames
from the dynamic sequence, the authors demonstrated that
CNNs can learn spatiotemporal correlation by combining
convolution and data-sharing approaches, outperforming cur-
rent methods in image quality with up to an impressive
11-fold undersampling.

Data-sharing approaches allow for aggressive
undersampling through the exploitation of spatiotemporal
redundancies present in dynamic imaging. For example, the
image content in pixels outside of the heart remain very stable
from image to image across time. And even for a pixel that falls
within the moving heart, the signal at any given moment is
informed by the preceding and following signal in that particu-
lar pixel location. Thus, samples from adjacent frames in a
dynamic sequence can be used to fill missing k-space samples in
the current frame. In subsequent work by the same group, Qin
et al38 proposed a convolutional recurrent neural network
(RNN) to reconstruct high-quality cardiac MR images from
highly undersampled (6-, 9-, and 11-fold undersampled) k-space
data. This approach embeds the structure of traditional iterative
algorithms while leveraging the RNN’s ability to learn spatio-
temporal dependencies across time sequences in order to achieve
superior reconstruction accuracy and speed compared to 3D
CNN and conventional CS-based methods.38

Reducing Artifacts
Motion Correction
Recently, deep-learning reconstruction techniques have been
explored for motion correction of MR images.39,40 The
methods presented in Oksuz et al and Haskell et al are both
model-based reconstructions that enforce consistency with
the acquired data. In Oksuz et al, motion correction was per-
formed in cine SSFP cardiac magnetic resonance images.39

They developed an artifact detection network that identifies
motion-corrupted k-space lines, for example due to triggering
errors or arrhythmias. The corrupted lines are removed and
zero-filled with the problem transforming into an under-
sampled reconstruction task, where the recurrent CNN

FIGURE 7: Flow chart illustrating a GAN. Every GAN is made up of two CNNs, a generator and a discriminator. Incorporating the
adversarial loss forces the generator to produce images that are indistinguishable from target images. The methods described in
Mardani et al, Quan et al, and Yang et al all have this general architecture; the main difference between methods lies in how data
consistency is enforced. IFFT = inverse fast Fourier transform.

1022 Volume 53, No. 4

Journal of Magnetic Resonance Imaging



described in Qin et al38 is then used for the reconstruction
task. Haskell et al introduced network accelerated motion
estimation and reduction (NAMER), a model-based recon-
struction that jointly performs motion estimation and solves
for the motion-corrected image.40 Motion correction was per-
formed on 2D T2-weighted rapid acquisition with refocused
echoes (RARE) images of the brain. Example results are
shown in Fig. 8.

Eddy Current Correction
Echo planar imaging (EPI) is a commonly applied MR
sequence; it offers high temporal resolution and is useful in
brain imaging for diffusion-weighted imaging and functional
MRI. A single-shot EPI sequence works by using a single RF
pulse with an alternating readout gradient to acquire all of k-
space by changing direction with each echo in odd and even
lines. A consequence of the rapidly changing gradient, how-
ever, is the induction of eddy currents within the coils and
magnet housing. These eddy currents create local fields that
distort B0 and cause phase mismatch between the odd and
even echoes, leading to ghost artifact.

EPI ghost artifacts are traditionally corrected by acquir-
ing an additional reference or calibration scan, resulting in
longer overall scan time. Conventional correction methods
also produce suboptimal results related to difficulties account-
ing for nonlinear and time-varying field inhomogeneity, espe-
cially at high field strength. Based on concepts derived from
recent work that reframes ghost correction as a k-space inter-
polation problem, Lee et al designed a k-space deep-learning
approach to correct the phase mismatch without a reference
scan in both accelerated and nonaccelerated EPI acquisi-
tions.41 Reconstruction of in vivo brain imaging data at 3T
and 7T using their proposed method outperformed existing
methods in image quality defined as ghost-to-signal ratio with
rapid computation time (Fig. 9).

PET/MRI Attenuation Correction
In PET (positron emission tomography), an accurate attenua-
tion map is required for correction of both photon attenuation
as well as photon scattering, and this attenuation map is typi-
cally derived from computed tomography (CT). Although
there are advantages to soft-tissue delineation using PET/MRI,
one major challenge of PET/MR hybrid imaging is achieving
accurate attenuation correction without a concurrent CT. For
example, on MRI, bone and air demonstrate near identical sig-
nal characteristics, although they differ obviously in attenuation
characteristics, leading to problematic, suboptimal PET recon-
structions and systemic errors in PET standard uptake values
(SUVs). Some MRI advances such as short- or zero-echo-time
imaging, in which bone carries signal, show promise as a
potential solution,42–46 but overall, accuracy of attenuation cor-
rection remains a factor contributing to limited translation of
PET/MRI to clinical practice.

Several authors have shown that deep-learning models
can be used to synthesize “pseudoCT” from MR images for
the purpose of attenuation correction.47,48 Essentially, the solu-
tion to the PET attenuation-correction problem in PET/MRI
is a deep-learning image synthesis step. In pelvic PET/MRI,
Leynes et al trained a deep network to transform zero-echo-
time and Dixon MR images into pseudoCT images and found
that the resultant images were “natural-looking,” quantitatively
accurate, and led to reduced error in attenuation correction
when compared to standard methods.43 In the brain, Liu et al
developed a deep-learning approach to generate a pseudoCT
from 3D volumetric T1-weighted MR images with decreased
PET reconstruction error when compared to existing MR-
based attenuation correction approaches.49 Even more recently,
the same group of authors and others, have explored whether
any sort of anatomic imaging is necessary (CT or MR) for
attenuation correction, demonstrating the feasibility of training
a network from nonattenuationcorrected PET imaging alone
to synthesize pseudoCT images.50,51

FIGURE 8: NAMER motion correction of a 2D T2-weighted brain image. Figure courtesy of Melissa Haskell.
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Challenges and Limitations
Training Requirements and Dataset Availability
Despite considerable advances and the promise that deep-
learning methods hold for MR image reconstruction, signifi-
cant challenges remain. Training high model capacity CNNs
for image reconstruction, depending on the task at hand, may
require large amounts of diverse training data. Without a
sufficient training set, as with any machine-learning algo-
rithm, these networks could overfit training data and not per-
form well on unseen data. For some applications such as
undersampling and denoising reconstructions, synthetic data
can be relatively easy to generate, although this may not be
the case in other situations, for example in cases where realis-
tic artifacts are difficult to predict.

Availability of datasets in medical imaging can be lim-
ited due to privacy and ethical concerns, and in the specific
context of MR image reconstruction problems, currently
there are very few publicly available databases containing mul-
tichannel raw k-space data. Access has thus far been some-
what limited to those at major academic medical centers,
hindering progress in the field. Collaboration with the greater
machine-learning community would be useful. Recent initia-
tives such as the fastMRI dataset (https://fastmri.med.nyu.
edu/) and mridata.org have started to address this need, but
more data sharing is required to adequately train and compare
new models.

Unique Nature of MRI and Medical Data
Thus far, there are only a small number of published studies
using deep-learning methods on k-space data for MR image
reconstruction. Despite recent major advances in computer
vision and image processing using natural images, the tech-
niques often are not easily applied to k-space. Furthermore,
the scale of training examples of natural images that are avail-
able are on the order of millions for deep-learning computer
vision problems14,52 and dwarfs the number of training

examples of medical images available. Another major differ-
ence between medical image reconstruction and image resto-
ration in computer vision problems is how quality is best
defined. For medical imaging problems, the best quality met-
ric may ultimately be task-based (diagnosis) rather than
generic performance metrics such as peak SNR or SSIM.

Generalizability and Interpretability
Major questions remain as to how specific trained models
must be. It is not yet known whether a single model can be
trained for a variety of MR exam types or whether separate
models are required for different sampling trajectories, accel-
eration factors, coils and coil configurations, field strengths,
pulse sequences, or anatomical regions. In clinical practice,
scan parameters are tailored for body part imaged, for individ-
ual patient characteristics (eg, body habitus, pediatric), as well
as clinical indication (eg, headache protocol differs from brain
tumor follow-up); however, it is not clear how differences in
scan parameters might affect a model’s performance. In addi-
tion, failure modes of these models may be unpredictable; for
example, while it has been shown that deep-learning recon-
structions can perform well with changes in image contrast
between training and test data, they can be vulnerable to sys-
tematic deviations in SNR.11

Systematic differences in data distributions between
institutions, imaging sites, and scanners may prohibit direct
translation of trained models across the board. There are lim-
ited reports on how well deep-learning-based reconstruction
techniques transfer between sites and scanners. An additional
limitation is the difficulty in interpreting trained models.
Trained CNNs are complicated, interconnected, and high-
dimensional representations, with predictions based on fea-
tures that are often too abstract to really understand. This
leads to some concern that deep-learning-based image recon-
struction methods could behave in unexpected ways under
new or unusual scenarios such as might occur in the case of

FIGURE 9: Ghost correction results of 3T GRE-EPI in vivo data demonstrating improved image quality defined as ghost-to-signal ratio
(GSR), when comparing the learned ghost correction and phase error correction with sensitivity encoding (PEC-SENSE), a
conventional method of ghost artifact correction. The lower the GSR value, the better the image quality. Example ROIs for ghost
and signal values are depicted by the orange and white rectangles, respectively. Figure courtesy of Jong Ye.
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rare pathologies or anatomical abnormalities. The challenge
of obtaining large, diverse, and well-curated training datasets
remains. Estimates of network uncertainty might be helpful
in assessing the validity of the image produced. Therefore,
continued and extensive validation of deep-learning models
and a thorough understanding of their generalizability and
their limitations will be necessary in order to incorporate such
schemes into clinical practice.

Future Perspectives
The challenges and limitations outlined in the previous
section at once sketch out the opportunities for future
research. The key next steps are: continued sharing of image
and raw k-space datasets to expand access and allow for model
comparisons, defining the best clinically relevant loss func-
tions and/or quality metrics by which to judge a model’s per-
formance, examining perturbations in model performance
relating to acquisition parameters, and validating high-
performing models in new scenarios to determine generaliz-
ability. In addition, how reconstruction approaches from k-
space may dovetail with deep-learning efforts in image post-
processing in the image domain will surely prove powerful.

Convenient or not, noise removal is often an
unintended consequence of most of the deep-learning image
reconstruction techniques described previously. With an
objective to minimize pixelwise error metrics such as MSE,

there is incentive for the network to generate a denoised ver-
sion of the target image. Denoising in MRI is a potential task
that could be tackled with deep-learning reconstruction
approaches. Kobler et al have taken advantage of this charac-
teristic of deep-learning-based reconstruction methods to spe-
cifically tackle denoising in CT.53 We have also found this to
be a promising approach in MRI in an experimental model
(Fig. 10), which could be explored in future research.

Super-resolution is the process of recovering or estimat-
ing a high-resolution image from a low-resolution image.54 In
medical imaging, it can improve image resolution without
requiring changes in imaging hardware or scan protocols. The

FIGURE 10: Example VN image denoising result. In these experiments Gaussian noise was added to coronal proton density-
weighted knee images and the noisy/clean image pairs were used to train the VN. The network was trained using the Adam
optimizer with a learning rate of 1 × 10-3 and a batch size of 1 for 20 epochs. A coronal proton density-weighted image of the knee
with added noise (a), the network output (b), and the target image (c). The absolute value of the difference between the target and
noisy images and between the target and network output are shown in (d) and (e), respectively.

FIGURE 11: Illustration of k-space sampling patterns for super-
resolution (left) and sparse sampling (right). The black regions
and lines represent acquired k-space lines. The white regions are
zero-filled.
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present literature on super-resolution CNNs in medical imag-
ing use postprocessing methodologies in organ systems and
modalities that require high levels of fine detail such as chest
radiography,55 mammography,56 and musculoskeletal
MRI.57,58 Translation of current deep-learning MR recon-
struction approaches to super-resolution is a promising tech-
nique that merits further investigation. Super-resolution in
MRI has similarities to sparse sampling discussed previously;
however, instead of uniform undersampling of the entire k-
space volume, the sampled region would include only the
low-resolution center lines of k-space. Figure 11 shows the
difference between the two approaches in the context of k-
space sampling, and a simple experiment comparing super-
resolution reconstruction and traditional accelerated recon-
struction with uniform undersampling is shown in Fig. 12.
Typical accelerated reconstruction techniques with uniform
density undersampling can be thought of as interpolating
missing image information, whereas super-resolution would
be extrapolating this information, which may be more
challenging.

Hybrid techniques may ultimately be powerful in deep-
learning reconstruction approaches. One advantage of neural
networks is the ability to stack algorithms together. There
may also be potential synergy that could be achieved between
deep-learning-based image reconstruction methods and deep-
learning-based image postprocessing methods, between MR
image reconstruction methods and CT image reconstruction
methods, and projection or adaptation of one modality to a
different modality domain. For example, Han et al exploited
similarities between sparse-view CT and accelerated radial

MRI to remove artifacts from undersampled radial MR
images.59 Based on the ability to convert radial k-space data
into sinogram data corresponding to the CT domain, the
authors essentially employed transfer learning to augment a
small radial MR dataset with pretraining on a large CT
dataset and thereby adapted a network trained in the CT
domain for the task of radial MR image restoration.

Conclusion
In summary, we have provided a basic overview of the clinical
applications for state-of-the-art deep-learning-based MR
image reconstruction methods. Deep-learning-based image
reconstruction shows considerable promise to accelerate both
static and dynamic MRI and to address imaging artifacts
including aliasing, motion, and ghosting. Current models are
applicable across a variety of clinical MRI applications from
neuroimaging to abdominal, cardiac, musculoskeletal, and
hybrid PET/MRI, each posing its own unique challenges and
may require customization of solutions. Deep-learning models
for MR image reconstruction have the potential to shift the
paradigm in terms of breadth of MR applications if substan-
tial decreases in acquisition time and improvements in image
quality can be realized.
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