Magnetization Transfer Contrast (MTC) and Tissue Water Proton Relaxation in Vivo

STEVEN D. WOLFF* AND ROBERT S. BALABAN†

Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, Bethesda, Maryland 20892

Received November 4, 1988; revised December 30, 1988

In this study the exchange between 1H magnetization in “free” water (1H$_0$) and that in a pool with restricted motion (1H$_r$) was observed in tissues in vivo using NMR saturation transfer methods. Exchange between these two pools was demonstrated by a decrease in the steady-state magnetization and relaxation times of 1H$_0$ with radiofrequency irradiation of 1H$_r$. The pseudo-first-order rate constant for the movement of magnetization from 1H$_r$ to 1H$_0$ was \sim 1 s$^{-1}$ in kidney and \sim 3 s$^{-1}$ in skeletal muscle in vivo. Proton NMR imaging demonstrated that this exchange was tissue specific and generated a novel form of NMR image contrast. The extent of exchange between 1H$_0$ and 1H$_r$, as well as the topological correlation of the exchange with relaxation weighted images suggests that this pathway is a major determinant of the observed relaxation properties of water 1H in vivo. © 1989 Academic Press, Inc.

INTRODUCTION

The relaxation properties of water 1H nuclei are the basis for most of the contrast obtained by nuclear magnetic resonance (NMR) imaging techniques. Conventional 1H NMR images of biological tissues usually reflect a combination of spin–lattice (T_1) and spin–spin (T_2) water 1H relaxation. The variations in water 1H relaxation rate generate image contrast between different tissues and pathologies depending on how the NMR image is collected. While the general mechanisms for water 1H relaxation have been described (1), the precise nature of these relaxation processes in tissue is still an active area of research. Investigators have proposed that a predominant relaxation mechanism in biological tissue is cross-relaxation and/or chemical exchange between 1H in “free” or highly mobile water and 1H associated with macromolecules or immobile water (2–6). These conclusions were based on detailed studies of the effect of static magnetic field strength (5, 6) as well as selective and nonselective excitation pulses (2–4) on water 1H relaxation rates.

The purpose of this study was to measure the rate of magnetization exchange between 1H spins in “free” water (1H$_0$) and 1H spins in regions of restricted motion (1H$_r$) as well as to image the distribution of this exchange process in intact tissues. To accomplish this, we used the saturation transfer method originally described by Forsen and Hoffman (7) in which the rate of magnetization exchange between two

* Howard Hughes Medical Institute–NIH Research Scholar.
† To whom correspondence should be addressed.
pools can be quantitatively measured. This technique has been used extensively to measure chemical exchange rates in intact tissues (8-10). Saturation transfer involves the selective steady-state irradiation, with radiofrequency energy, of one member of an exchanging pair of spins and observation of the effects of this irradiation on its nonirradiated exchange partner. If exchange is occurring, the irradiation will cause a decrease in the steady-state magnetization and a decrease in the observed T_1 of the nonirradiated spin (8, 11). These effects are not limited to chemical exchange, since through-space cross-relaxation between the two pools will have identical effects.

MATERIALS AND METHODS

All experiments were performed using General Electric CSI spectrometers operating at 4.7 or 2.0 T. The rabbit kidney and skeletal muscle preparations were used as previously described (9, 10, 12). Coil designs for these studies were also previously described for the rabbit leg (9) and kidney (12) in vivo.

RESULTS

Saturation transfer experiments were performed in the present study by irradiating the immobilized 1H$_r$ pool and observing the effect on the steady-state magnetization as well as the observed spin–lattice relaxation (T_1) time of 1H$_r$. We assumed that radiofrequency irradiation \geq 5 kHz from the 1H$_r$ resonance would result in a selective irradiation of 1H$_r$, since 1H$_r$ would have an NMR linewidth much greater than 1H$_r$ (i.e., the T_2 relaxation time should be shorter for 1H$_r$) (13). Saturation transfer experiments were conducted by preirradiating at frequencies selected within 200 kHz of the Larmor frequency of the 1H$_r$ resonance. Figure 1 shows the effect of irradiation at the frequency 10 kHz lower than the 1H$_r$ resonance of a rabbit kidney in vivo. The preirradiation resulted in a specific 30% decrease in the magnitude of the water resonance (measured as the area of the resonance peak) that was not observed for the other 1H signals from fats or trimethylamines even though the irradiation was closer in frequency to these metabolites. This effect was also reproduced in rabbit skeletal muscle and brain in vivo. These results are consistent with the presence of a specific magnetization exchange between 1H$_r$ and 1H$_r$ pools in these tissues.

The decrease in 1H$_r$ signal by irradiation of 1H$_r$ was found to be power- and frequency-dependent. The effect of irradiation power on the steady-state 1H$_r$ signal is shown in Fig. 2A. Using this curve, the maximum decrease in steady-state 1H$_r$ magnetization obtained by irradiating 1H$_r$ was estimated to be 70% in the kidney in vivo. This irradiation power versus 1H$_r$ magnitude curve was obtained for all of the tissues and fluids studied in this investigation to assure that a maximum effect of irradiation was recorded at any given frequency.

A significant decrease in the net magnetization of the 1H$_r$ resonance was observed over a wide range of irradiation frequencies (±50 kHz) surrounding its resonance frequency. The effect of different irradiation frequencies, at constant power (0.4 W), is shown in Fig. 2B. The linewidth of the irradiation effect was approximately 40 kHz and symmetrically centered around the 1H$_r$ resonance in the rabbit kidney (Fig. 2B) and skeletal muscle in vivo (not shown) as well as in canine heart muscle in vitro (Fig. 2C). No magnetization transfer was observed in distilled water (Fig. 2B).
doped water samples (to mimic in vivo T_2 values), or rabbit urine samples (not shown). The bandwidth (in Hz) of this effect was found to be independent of magnetic field strength (4.7 and 2 T) in canine heart muscle in vitro (Fig. 2C) and was equivalent to that found in 3% agar solutions (not shown). The field independence of the linewidth suggests that the restricted motion of this 1H, pool approaches the rigid-lattice condition (correlation time $> 10^{-7}$ s$^{-1}$) (13).

The effect of nonspecific radiofrequency bleed over from an irradiation is usually controlled by irradiating frequencies on either side of a specific resonance to look for frequency-specific effects (8–10). Since the 1H, component is symmetrical around 1H, (Figs. 2B and 2C) such controls are not possible in these experiments. However, the radiofrequency bleed from the off-resonance irradiation can be determined using the equation (14)

$$M_s = M_0(1 + T_{2\gamma}^2\omega^2)/(1 + T_{2\gamma}^2\omega^2 + \gamma^2H_1^2T_{1\gamma}T_{2\gamma}),$$ \[1\]

where ω is the offset frequency (hertz), γ is the gyromagnetic ratio, and H_1 is the magnetic field (tesla) induced by the irradiation. For this calculation, it is assumed
that the irradiation time is on the order of $T_{1\text{r}}$. Other terms are defined in the text. The H_1 fields were estimated by determining the time required to produce a 360° flip by the decoupler at the power levels used in this study. The H_1 field varied from 7.0×10^{-6} T (0.4 W) to 3.5×10^{-5} T (8 W) in the kidney coil and 6×10^{-6} T (0.75 W) to 1.6×10^{-5} T (4.4 W) in the leg coil. Using an irradiation strength of 7×10^{-6} T at 5 kHz (which was used for the rate constant calculations in this study), a $T_{2\text{r}}$ of 60 ms determined from spin-echo experiments, and a $T_{1\text{r}}$ of 1.5 s (see Table 1), the bleed over of radiofrequency energy would result only in a <8% decrease in the 1H_1 resonance of the kidney. Thus, the irradiation effects observed in this study can be only minimally influenced by radiofrequency bleed over. The T_2 of 1H_1 ($T_{2\text{r}}$) can be estimated from the frequency plot shown in Figs. 2B and 2C using Eq. [1] which can be used to define the frequency response of the irradiation as a function of power, T_1 and T_2. The irradiation H_1 field was 7×10^{-6} T and a $T_{1\text{r}}$ of 1 s was assumed (on the
basis of the estimated correlation time of this dipolar spin). This resulted in a calculated \(T_{2r} \) of 0.2 ms assuming that the \(H_1 \) field was uniform as a function of frequency with these rather low \(Q (~90) \) loaded coils.

The \(T_1 \) of the \(^1H \) pool in the absence of exchange (\(T_{10} \)) can be determined from the effect of \(^1H \) irradiation on the observed \(T_1 \) of the \(^1H \) pool (\(T_{1,\text{sat}} \)) and the steady-state \(^1H \) magnetization before (\(M_0 \)) and after (\(M_s \)) irradiation according to the following equation for an inversion recovery experiment (11),

\[
T_{1f} = M_0/M_s \times T_{1,\text{sat}},
\]

where \(M_0 \) is the \(^1H \) steady-state magnetization without irradiation and \(M_s \) is with irradiation of \(^1H \). It should be noted that \(T_{1f} \) will still be influenced by other \(T_1 \) relaxation mechanisms, such as exchange with \(^1H \) pools not irradiated and/or paramagnetic relaxation. To evaluate the effect of \(^1H \) irradiation on the observed \(T_1 \) of \(^1H \), inversion recovery experiments were conducted in the presence and absence of irradiation of the \(^1H \) pool. With a 0.4-W irradiation 5 kHz from the \(^1H \) resonance, the \(T_1 \) changed from \(\sim 1.5 \) s without irradiation to \(\sim 0.62 \) s. This observed decrease in the \(T_1 \) of \(^1H \) with irradiation of \(^1H \) is also consistent with the exchange of magnetization between these two pools. Using Eq. [2], the \(T_{1f} \) values of whole kidney and rabbit skeletal muscle were calculated and are presented in Table 1. The \(T_{1f} \) of the kidney (\(\sim 2 \) s) is much shorter than that of skeletal muscle (\(\sim 4.5 \) s) implying that a \(T_1 \) relaxation mechanism other than magnetization exchange with the \(^1H \) pool is affecting the \(^1H \) pool in kidney. Likely candidates for this additional relaxation effect in kidney are paramagnetic metals, such as manganese, which are 10 times higher in concentration in kidney than in skeletal muscle (15).

The apparent pseudo-first-order rate constant for the movement of magnetization from \(^1H \) to \(^1H \), can be estimated from the effects of irradiating \(^1H \) on the \(^1H \) pool \(T_1 \) and steady-state magnetization using the equation (7–10)

\[
k_a = 1/T_{1,\text{sat}}[1 - M_s/M_0],
\]

where \(k_a \) is the apparent pseudo-first-order rate constant of magnetization transfer from \(^1H \) to \(^1H \). Table 1 lists the calculated \(k_a \) values for rabbit skeletal muscle and

TABLE 1

<table>
<thead>
<tr>
<th>Tissue</th>
<th>(T_{1,\text{obs}}) (s)</th>
<th>(T_{1,\text{sat}}) (s)</th>
<th>(M_s/M_0)</th>
<th>(T_{1f}) (s)</th>
<th>(k_a) (s(^{-1}))</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidney</td>
<td>1.5 ± 0.05</td>
<td>0.62 ± 0.08</td>
<td>0.30 ± 0.03</td>
<td>2.0 ± 0.2</td>
<td>1.2 ± 0.2</td>
<td>4</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td>1.5 ± 0.02</td>
<td>0.30 ± 0.03</td>
<td>0.07 ± 0.005</td>
<td>4.5 ± 0.5</td>
<td>3.1 ± 0.3</td>
<td>4</td>
</tr>
</tbody>
</table>

Note. All experiments were conducted on rabbits in vivo at 4.7 T and 37°C. \(T_{1,\text{obs}} \) and \(T_{1,\text{sat}} \) were determined using an inversion recovery experiment as previously described for \(^31P \) in skeletal muscle (10) to obtain uniform times of saturation. For the kidney irradiation, 0.4 W was used to obtain saturation for the \(T_{1,\text{sat}} \) and \(M_s/M_0 \) determinations. For skeletal muscle irradiation, 1.6 W was used. All terms are defined in the text. \(T_{1f} \) and \(k_a \) were calculated using Eqs. [2] and [3], respectively. All data are presented as means ± standard error of the mean.
Fig. 3. Transverse spin-warp 1H NMR images of rabbit kidney in vivo. The rabbit kidney preparation was as previously described (12). (A) 1H density image, TR = 4.2 s, TE = 20 ms, field of view = 40 × 40 × 3 mm, digital matrix size 128 × 128. (B) Image collected using the same parameters as above, but with 3.5 s of 0.4 W irradiation 5 kHz below the resonance frequency of 1H occurring just before slice selection. (C) Ratio image of image (B) divided by image (A) (M_r/M_0 image). (D) T_2-weighted kidney image. Collection conditions are the same as those in (A) only an 80-ms TE is used to generate T_2 contrast.
kidney in vivo using Eq. [3]. The higher rate constant in skeletal muscle may be due to a higher protein content and/or a more efficient exchange mechanism in this tissue.

The values presented in Table 1 represent the average exchange occurring over the whole tissue studied. To investigate whether or not this magnetization exchange between 1H_r and 1H_s is homogeneous throughout tissues, the effect of 1H_r irradiation on the distribution of steady-state 1H magnetization was evaluated using NMR 1H
imaging. Since the conventional NMR imaging experiment requires the collection of an echo, these techniques generally detect only the 1H$_r$ pool because of its relatively long T_2. NMR images of the kidney in vivo were taken using a conventional spin-warp sequence with and without irradiation 10 kHz from 1H$_r$ resonance. The images presented in Figs. 3A and 3B were collected with a 4.2-s recycle time (TR) and 20-ms echo time (TE) to minimize T_1 and T_2 contrast effects. Figure 3A is the control image without irradiation, Fig. 3B is with irradiation, and Fig. 3C is the ratio of irradiated image to the control image (i.e., an M_2/M_0 image (9)). To obtain an actual k_0 image, the $T_{1\text{sat}}$ of each voxel would have to be determined (9). The intensity of the renal cortex of the kidney was reduced by the irradiation to a much greater extent than the inner medulla resulting in improved contrast between these regions in the irradiated image (Fig. 3B) as well as the ratio image (Fig. 3C). This suggests that the exchange rate in the cortex of the kidney is higher than that in the inner medulla. The urine, blood vessels, and fat were not significantly affected by the irradiation resulting in a very high intensity signal from these structures in the irradiated (Fig. 3B) and ratio (Fig. 3C) image. The lack of effect on urine presumably is due to the limited number of macromolecules in urine resulting in limited magnetization exchange between a 1H$_r$ and a 1H$_l$ pool. Blood 1H$_r$ was less affected by irradiation since the flow of blood results in 1H spins entering the field of view which were not irradiated if they came from a region outside of the coil. Furthermore, the irradiation of 1H$_r$ in whole rabbit blood (hematocrit 43%) in vitro resulted in a decrease in 1H$_r$ which was approximately twofold less than that of the whole kidney, indicating that the 1H$_r$-1H$_l$ exchange is relatively slow in blood. The fat was unaffected since this resonance does not exchange with the 1H$_r$ component (Fig. 1). These results demonstrate that the magnitude of the irradiation effect on 1H$_r$ is tissue specific and causes tissue contrast in the NMR image on the basis of the exchange process as well as flow from regions not affected by the irradiation.

DISCUSSION

These data demonstrate that the 1H$_r$ pool is exchanging magnetization with an immobilized 1H$_r$ pool. On the basis of the present data it is not possible to establish what portion of this exchange is due to a chemical exchange of protons or a through space interaction with immobilized water and/or macromolecules. Preliminary studies ($n=3$) with natural abundance or isotopically enriched 2H water signals in rabbit skeletal muscle in vivo reveal that no saturation transfer is observed with a broad component using conditions similar to those outlined for 1H. This result may imply that the dipolar cross-relaxation may be the dominate factor in the saturation transfer observed with 1H. However, the quadrupolar relaxation of 2H could result in such a broad line for the immobilized water that it could not be effectively saturated in these protocols and/or the relaxation processes could simply be dominated by the quadrupolar relaxation process. Clearly, more studies are required to establish the actual mechanism causing the saturation transfer observed between 1H$_r$ and 1H$_l$.

Independent of the mechanism, the exchange between the 1H$_r$ and the 1H$_l$ pool will result in the observed 1H$_r$ relaxation times (i.e., both T_1 and T_2) to be affected by the relaxation times of the 1H$_r$ pool according to the equation
\[\frac{1}{T_{\text{obs}}} = \frac{1}{T_i} + X_i/(T_i + 1/k_i), \]

where \(T_{\text{obs}} \) is the observed \(T_i \) or \(T_2 \) of the \(^1\text{H}_i \) pool, \(T_i \) is the \(T_1 \) or \(T_2 \) of the \(^1\text{H}_i \) pool in the absence of exchange, \(X_i \) is the mole fraction of the \(^1\text{H}_i \) pool, \(T_i \) is the \(T_1 \) or \(T_2 \) of the \(^1\text{H}_i \) pool in the absence of exchange, and \(k_i \) is the rate constant of the transfer of magnetization from the \(^1\text{H}_i \) to the \(^1\text{H}_r \) pool. This equation is valid only when the two exchanging pools have the same chemical shift (see Fig. 2B) and \(X_i \) is less than 0.3 (13). With the \(^1\text{H}_i \) pool effectively at the rigid lattice condition, the \(T_2 \) of this component will be much shorter than \(T_1 \) (13). Thus, according to Eq. [4], we might expect the effect of the magnetization exchange to be much more pronounced for the observed \(T_2 \) of the \(^1\text{H}_i \) pool than for its \(T_1 \). Indeed, the \(M_r/M_0 \) images obtained for the rabbit kidney (Fig. 3C) and cat head (not shown) correlate with conventional \(T_2 \)-weighted images (Fig. 3D) and not \(T_1 \)-weighted images with regard to overall tissue contrast patterns. This latter result suggests that the pathway of relaxation through \(^1\text{H}_r \) is very significant in determining the observed \(T_2 \) in these tissues.

The imaging technique described generates tissue contrast on the basis of the extent of magnetization transfer occurring in the tissue (i.e., magnetization transfer contrast (MTC)). This contrast is very similar, on a gross level, to \(T_2 \) contrast although it can be obtained without long echo times. Indeed, we have been successful in obtaining high-contrast images using gradient-recalled echo sequences (5-ms TE) using this approach (Wollf and Balaban, in preparation).

In summary, it has been demonstrated in a variety of biological tissues that the free water component of the \(^1\text{H} \) NMR signal is in magnetization exchange with a relatively immobile component. The pseudo-first-order rate constant of this exchange varied from 0 to \(\sim 4 \) s\(^{-1} \) depending on the particular tissue or fluid type. The exchange mechanism could include chemical exchange and/or cross-relaxation processes between the free water \(^1\text{H} \) and the \(^1\text{H} \) in or associated with large cellular macromolecules (proteins, membranes, etc.). The magnitude of this exchange process was imaged in tissue and provided a unique quantitative form of contrast for NMR imaging. Since the image contrast generated using this method is specific to the exchange between \(^1\text{H}_r \) and \(^1\text{H}_i \), this technique may prove valuable in diagnosis or characterization of cancer, edema, or other pathologies where the specific relaxation mechanism may be useful in determining the nature of the disease.

ACKNOWLEDGMENTS

The authors thank the following investigators for numerous helpful discussions during the course of these experiments: Drs. B. Bryant, T. Brown, S. Konig, J. Alger, J. Eng, and B. Berkowitz.

REFERENCES