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The fundamental operations of nuclear magnetic resonance {NMR) imaging can be formulated,
for a large number of methods, as sampling the object distribution in the Fourier spatial-
frequency domain, followed by processing the digitized data (often simply by Fourier
transformation) to produce a digital image. In these methods, which include reconstruction from
projections, Fourier imaging, spin-warp imaging, and echo-planar imaging, controllable gradient
fields determine the points in the spatial-frequency domain which are sampled at any given time
during the acquisition of data (the free induction decay, or FID). The detailed time dependence of
the resulting trajectory of sample points (the k trajectory) determines the relative weight and
accuracy with which image information at each spatial frequency is measured, establishing
theoretical limitations on image quality achievable with a given imaging method. We demonstrate
here that these considerations may be used to compare the theoretical capabilities of NMR
imaging methods, and to derive new imaging methods with optimal theoretical imaging

properties.

I. INTRODUCTION

A nuclear magnetic resonance (NMR) imaging instrument
forms images by causing the object being imaged to emit
radio-frequency signals which contain information. That in-
formation concerns the spatial distribution of nuclear mag-
netization within the object. (More precisely, it concerns the
magnitude of the transverse component of the magnetiza-
tion, which in general reflects spin density and the relaxation
times T, and 7, in combination. Although rf pulse sequences
may be applied which cause the image to reflect predomin-
antly one of these quantities alone, in all cases the transverse
component of the magnetization is the quantity whose distri-
bution is represented in the radio-frequency signal.) Various
techniques have been devised to encode this basic informa-
tion into the radio-frequency signal by means of rf pulses and
time-varying gradient fields.

Just as each NMR imaging method has a strategy for en-
coding spatial information into a noisy NMR signal, each
method must have a corresponding decoding procedure,
which extracts the desired information from the noisy signal.
Often any one of a number of different decoding procedures
can be used with a given encoding procedure. As in the case
of the computational procedures used for reconstructing im-
ages from CT (computerized tomography) projections, some
decoding procedures are more accurate, more reliable, or
more efficient than others, but in all cases the information in
the final image can be no better than the information present
in the noisy data. Thus the process of encoding spatial infor-
mation is worth some scrutiny, as it is a major determinant of
the quality of information in the displayed NMR image.

Other imaging modalities, such as CT imaging, offer li-
mited opportunity for improving image quality by improv-
ing the encoding process, since encoding can only be done in
arather limited number of ways. In contrast, there are a very
large number of potentially workable NMR imaging meth-
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ods, and the quality of the encoding operation, and hence the
quality of images available, varies a great deal among them.

The aim of this communication is to present a new ap-
proach to understanding the encoding process in NMR
imaging, and to present a few of the applications of this ap-
proach in performance analysis of NMR imaging methods,
and in synthesis of new NMR imaging methods.

Encoding in NMR imaging has been understood as a pro-
cess of producing NMR spectra corresponding directly to
spatial projections largely because NMR imaging developed
largely as an extension of NMR spectroscopic methods.

Unfortunately, there are some significant disadvantages
to this approach—it obscures some fundamental similarities
between various existinig methods, and it fails to provide a
consistent and convenient theoretical framework for quanti-
tatively assessing imaging performance.

An alternative and equally valid viewpoint exists, how-
ever, which provides both a useful intuitive picture of the
imaging process and an analytic model which allows consis-
tent comparison of imaging performance for existing meth-
ods and derivation of new imaging methods with desired
performance characteristics.

This alternative viewpoint, which we call for convenience
the k-trajectory formulation, has been noted before.' Its ap-
plication as an analytic model for assessing imaging perfor-
mance, and its potential in deriving improved NMR imaging
techniques, have been remarked only recently,’ and are dis-
cussed in detail for the first time in this communication.

The essence of the k-trajectory formulation is that time-
varying gradients map the spatial-frequency-domain con-
tent of the object directly into the FID signal. As will be
shown in Sec. II A, this mapping may be visualized in terms
of a trajectory in the spatial-frequency domain (or k domain)
referred to as a k trajectory.

The k-trajectory formulation applies only to those meth-
ods in which an FID (with or without “echoes”) is produced.

© 1983 Am. Assoc. Phys. Med. 610



611 Donald B. Twieg: k-trajectory formulation of NMR imaging

Methods which use steady-state free precession as the excita-
tion mechanism>* cannot be formulated readily in k-trajec-
tory terms.

We refer to the large class of methods describable in k-
trajectory terms as the generalized Fourier NMR imaging
methods, because of the fundamental Fourier transform re-
lationship between the data (the FID) and the image. The
term “‘generalized” is used because these methods map the
spatial-frequency (Fourier) domain information into the
FID, but in general they do not perform this mapping linear-
ly, as do existing techniques with constant encoding gradi-
ents.

Among the generalized Fourier NMR imaging methods
are most established imaging methods: The original Fourier
method of Kumar, Welti, and Ernst’; the spin-warp method
of Edelstein et al.%; the zeugmatographic or reconstruction
from projections method of Lauterbur and colleagues’’; the
echo-planar method of Mansfield and colleagues'®'; the
rotating frame method of Hoult"; modifications of these
methods.'* !¢

The list of potentially workable generalized Fourier meth-
ods could go on indefinitely; there are an infinite number of
ways to scan the k domain which will successfully place into
the FID:s sufficient information to permit image formation
from the FIDs. Each of these encoding schemes will have
advantages and disadvantages in terms of the quality of im-
age information it conveys, and in terms of the ease of imple-
mentation of its gradient program, and its sampling and de-
coding (computational) procedures. Some of these
unrealized methods appear to offer significant performance
advantages.

In tomographic NMR imaging, images representing two-
dimensional “slices” of an object are produced. The follow-
ing development applies to generalized Fourier NMR meth-
ods regardless of the means they use for slice selection.
Methods using Fourier slice selection'” (which is equivalent
to the three-dimensional Fourier method), selective excita-
tion,”'® and oscillating gradients'® may all be treated by the
k-trajectory formulation. When oscillating gradients are
used, signal averaging over periods long with respect to the
period of oscillation greatly attenuates the net signal contri-
bution from spins outside the region of constant field.

Il. THE GENERAL A-TRAJECTORY VIEW OF NMR
IMAGING

A. k trajectories

In the imaging methods with which we are concerned, a
complex signal s(¢ ) (known as a free induction decay or FID
in Fourier NMR spectroscopy®>*') is evoked from a spin
system in response to an applied radio-frequency pulse. Sup-
pose a homogeneous static magnetic field Ho is imposed on
an object with magnetization distribution f(x) where x is a
two- or three-dimensional set of spatial coordinates in vector
form. The spins in the object are assumed to have the same
gyromagnetic ratio’’** ¥ throughout, and the FID is as-
sumed to be the result of quadrature phase detection referred
to the common Larmor frequency.

If the exciting rf pulse is applied with center at time ¢ = 0,
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the complex FID following the rf pulse will be (for ¢ > 0):
s(t) = f expl — t /T,) fix)exp[ — 27k(t) x] dx, (1)
|4

where T, is the spin-spin relaxation time.**> Here k{z) is de-
fined as

kit) =7 fo dH (¢')/dx dt’, 2)

where 7 is the nuclear gyromagnetic ratio for the nucleus
being imaged.

The vector quantity k(¢ ) is the integral of the gradients, but
it can also be seen in Eq. (1) as the vector of spatial-frequency
coordinates. That is, Eq. (1) can be rewritten as

sit) = exp( — 1 /T;) F[k(t)), (3)

where for simplicity, we assume 7', to have only one value
within the object, and where F'is the Fourier transform of the
object spatial distribution f1{x}.

It is not necessary to assume that the FID results from
perturbation of the spin systems by a single f pulse. Any of
the multiple-pulse methods*'** for determining spin-spin
and spin-lattice relaxation times T, and T, for instance, may
be treated in their adapted imaging forms® by essentially the
same model developed below.

Equation (3) suggests that we can see the continuous-time
FID, s(t ), as a weighted (and noisy) observation of the spatial
frequency distribution F (k) corresponding to the original ob-
ject. The encoding process, then, consists of sampling along
aset of k trajectories determined by the time-varying gradi-
ents, and the decoding process consists of processing those
samples (usually by means of the Fourier transform) to ob-
tain a discrete image which is an estimate of the original
spatial distribution. The remainder of this communication
will examine the details of these encoding and decoding pro-
cesses, and how the choice of imaging method thereby in-
fluences imaging performance.

B. Sampling and discretization

In practice, NMR images are invariably displayed digital-
ly, so the final image is a function of a discrete variable, as is
the original data—the sampled and digitized FID—used to
generate the image. It seems appropriate, then, to consider
the operation of the encoding and decoding processes in the
discrete-variable form in which they actually occur after
sampling.

In many imaging methods, the sampling process itself oc-
curs in essentially the same way—each discrete sampled val-
ue corresponds to integration with an identical sampling
kernel at a rectangular grid point in & space. Thus for pur-
poses of comparing relative performance among these meth-
ods, only the discrete postsampling encoding and decoding
procedures involving discrete variables need be considered.

Consider an imaging method which uses a set of FIDs
identified by the index j = 0,1,2,....J — 1, and suppose each
is distinct. In other words, for the time being, we assume
(with no loss of generality) that all £ locations sampled are
sampled only once, and ignore signal averaging in whicha k
location is sampled multiple times by repeated k trajectories.

Suppose the FID s;(¢ ) is periodically sampled throughout
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the course of the FID at times ¢, (p = 0,1,2,...,N — 1), and
suppose that the pth sample represents an integration of s, (r )
over the interval [, t,, + 41, ], where

4n,<(t,,  —t

/ iP)

tjp ’

{Fig. 1). Denote the resulting sequence of V values as 5,:
4

If neither of the integrand factors changes substantially
over the interval of integration, we may write the approxi-
mate expression

Sip =Atjp exP(_th/TZ)F[kj(tjp)]’ (5)
with j =0,1,...,(/ — 1) and p =0,1,..,(N — 1). Neglecting
noise considerations, then, the complete set of FID data rep-
resented by the two-dimensional N X J array {s,, ] is a set of
weighted samples of the image k-domain distribution
F [kj (tjp)] )

If the sample & values [specified by the & trajectories k;(¢)
and the sample time and interval sequences ¢, and 47,,] are
arranged on a rectangular grid in the & domain, we can sim-
ply treat the data values as a discrete Fourier-domain image,
and obtain our discrete spatial-domain image by applying a
two- or three-dimensional discrete Fourier transform. Most
of the established NMR imaging methods operate in this
fashion. For purposes of comparing methods which sample
on a rectangular grid, the approximation errors in Eq. (5) are
irrelevant, since they are the same for each of those methods.

For some of the established methods (reconstruction from
projections and the echo-planar methods), and for the gen-
eral case, however, the samples are not taken on a rectangu-
lar grid. In these cases, in order to apply the discrete Fourier
transform to obtain a discrete image array for display, a rec-
tangular array of k samples may be computed (interpolated)
from the irregularly spaced sample array.

The reconstruction from projections method most often
uses a filtered backprojection or similar reconstruction algo-
rithm rather than interpolation and Fourier inversion,
though the latter process can be used. For our purposes, it is

g/

4+ AL
5, = f exp( — 1 /T,) F [Kj{r)] dt.

e

Sj(i)

\‘
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Sq /

I

\
I
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~— —
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| | .

F1G. 1. The datum s, results from sampling the jth FID s;(z ) during the pth
timeinterval [1,, 1, + 4, ], and corresponds to a datum s, in the discrete
spatial-frequency coordinate g.
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useful to consider the reconstruction from projections meth-
ods as operating in this sampling-interpolation-inverse
transform sequence, just as the other generalized Fourier
methods do.

The NJ data values of Eq. {5) could represent data from
either two- or three-dimensional Fourier imaging proce-
dures. In the case of the spin-warp method, or the original
Fourier method in their three-dimensional implementa-
tions, if a cubic array of image elements (N X N X N ) were to
be formed, N ? FIDs could be used, so that J = N2,

Let q be the vector of discrete spatial frequency indices.
Then the data s, can be rearranged into a discrete spatial-
frequency array s, such that the inverse discrete Fourier
transform (DFT) will produce from it an estimated image
£, (n), where n is a vector of spatial coordinate indices. Sup-
pose the sample times ¢, are reordered into the array 7., as
was the sample array s,,. The data are then given by

sq =4t  exp(—1,/T,) F[k, ], (6)

where k, is the k-sampling point corresponding to the dis-
crete spatial-frequency index q.

As we have seen, the encoding procedure which charac-
terizes a given generalized Fourier method is defined by (1)
its set of k& trajectories {k;(¢), j=0,1,2,...J — 1}, and (2) its
schedule of FID sampling times 7, or periods 47,
j=01.J—-1p=0,1.,N—-1

There is a set of basic sampling requirements for image
formation associated with an object’s size and the dimension
of the desired image array. Specifically, two basic require-
ments must be satisfied by any method. These are (1) the
range of sampling within the ¥ domain must include all spa-
tial frequencies present in significant amount within the ob-
ject and (2) the frequency of sampling within the X domain
must, on the average, match the extent of the object (i.e.,
Ak =K /N<1/X).

The second requirement seems to allow arbitrary sam-
pling density locally, so long as the net sampling density is
adequate. However, there are practical restrictions on how
sparsely one may sample locally, which are determined in
part by the noise content of the data.”***

C. Statistical characteristics of NMR imaging data

The function F (k), via the sampling process, determines
the value of the idealized discrete spatial frequency function
F,(q). Since the datum s_ is the observed value for this func-
tion, and s, is implicitly interpreted by many established
methods as F,(q), we define the observed distribution
F,(q) = 4s,, where 4 is a scalar constant. If we include ran-
dom noise as an additive term V'(q), we have the linear dis-
crete observation equation

Fola)=H(q) F,(a) + V'la), (7
for all q, where
H(q) = AAt, exp( —t,/T>). (8)

The noise ¥'(q) will be assumed to have zero mean and vari-
ance E {|V'(q)?|} proportional to 4z,, and to be independent
of the object distribution. This last assumption seems justi-
fied under most expected NMR imaging circumstances.”®
Suppose we choose to represent the distribution f{x) by a
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digital image which is just the inverse transform of Fy. In
other words, we simply perform the inverse transform and
do not process the data in any other way. Then the quality of
the image representation as measured in the spatial-frequen-
cy domain could be judged on the basis of the error in Fy(q) as
an estimate of F,(q). This error is 2 random number, with
mean

E {F,{q — Fola)} = [1 — H(q)] F.(q),
and expected square error
E (| F,la) — Fola)’}

(9)

= |[1 - H (@] F,lq)* + var{V (g}, (10)
where E { | denotes the expected value of the bracketed
quantity.

Generally, some postacquisition processing will be used,
such as simple two-dimensional low-pass filtering of the im-
age, or application of a “matched” filter”® to the FID. In
most cases, this processing may be modeled as a linear shift-
invariant operation, corresponding to discrete convolution
with a fixed kernel in the spatial domain, or to multiplication
by a discrete filter transfer function in the spatial-frequency
domain.?%?’

If the resulting spatial-frequency estimate is F,(g), and the
linear filter is H,(q), then

F,(q)=H,(q) Fola) = H,(q) {H(q) F,0) + V'(@}. (1])

In this case the mean of the'estimate error

Fcrr(q) =Fd(q) _Fe(q)
is

E {F.(q} =[1—H,q H(a)] F.(0), (12)
and the expected square estimate error is

E{|F. [’} =|[1 - H, () H)] Fa)

+ | H (@) var{V'(q)}, (13)

where V' ’(q) is uncorrelated with the image distribution. For
unbiased methods, in which H,(q) = H (q)~ ', the first term
on the right-hand side of Eq. (13) vanishes, and the expected
square estimate error becomes the estimate error variance
Vela)

Equation (13) represents really a special case; in general,
there may be correlation between the measurement errors
F_.(q) and F,_(q') so that error variance can be completely
expressed only in terms of a covariance matrix with the
(q,q')th element given by

P..(0.q)=E {F% (q) F.(q)} (14)
For the case where H, = H,,, = H ~' and where the

noise V' is uncorrelated with F, and with itself, P,,, is diag-
onal with elements P, (q,q) = V,(q).

The discrete-variable imaging model we have developed
from the k-trajectory formulation is entirely consistent with
the view of NMR imaging as a linear estimation process:
Note that in Eq. (7), F,, represents a linear observation of ¥,
and in Eq. (11), F, represents a linear estimate of F, based on
the linear observation F,. If the additive noise is Gaussian,
image formation is described as completely as possible by the
means and variances of the frequency-domain components
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for which Eqs. (9) and (10), or (12) and (13), give approximate
values.

D. Encoding procedures and imaging performance

The sampling requirements stated above are met by a very
large number of generalized Fourier NMR imaging methods
{all those which sample the & plane over the proper range and
at the proper spacing for the object size and digital image
dimension.) Although the encoding procedure for each of
these methods is adequate in this sense, the details of the
encoding procedure can influence the information content of
the images, so that imaging performance varies a great deal
among them. Here we consider in detail the influence of en-
coding procedure on imaging performance.

Brunner and Ernst?® have applied to a large number of
NMR imaging methods two theoretical measures of perfor-
mance which appear useful in comparing the methods.
These are (1) sensitivity and (2) performance time.

In terms of k-domain sampling, minimum performance
time is simply determined by the number of FIDs required to
adequately sample the ¥ domain and the time devoted to
each FID (often determined in practice by the relaxation
times®® T, and T>). It represents the minimum data acquisi-
tion period required to acquire a complete set of data for an
image, and should be an important quantity in determining
the practicality of an imaging method in clinical applications
(see Sec. 111 D).

Sensitivity is a performance index reflecting the image sig-
nal-to-noise ratio obtainable in unit time. This should be of
use in judging the relative efficiency of imaging methods.
Assume two imaging methods have been applied to the task
of imaging the same object, using the same imaging hard-
ware, and the minimum performance time requirement has
been met for both methods. As signal averaging continues,
the more sensitive method should produce an image with
superior signal-to-noise ratio at any given time.

Unfortunately, the signal-to-noise ratio used in this defini-
tion of sensitivity represents signal-to-noise integrated over
all spatial frequencies, and is consequently somewhat inap-
propriate as a measure of image quality. For example, con-
sider the images of Figs. 2(a) and 2(b). The image in Fig. 2(b}
has had its integrated signal-to-noise ratio improved by
matched filtering®® of the simulated noisy FIDs used to gen-
erate it, and as a consequence both the high spatial-frequen-
cy noise and image details have been greatly attenuated. The
unfiltered image contains visual details lost in the filtered
image, because the matched filter cannot judge the adequacy
of signal-to-noise ratios in each spatial-frequency compo-
nent. It simply preferentially attenuates the components ex-
pected to have lower signal-to-noise ratios, even if those sig-
nal-to-noise ratios are adequate to convey meaningful
information to the observer [as they are in the case of Fig.
2(a)]. Barrett and Swindell”® point out that the stratagem of
the matched filter is appropriate for optimal detection (as of
spectroscopic lines), but not for optimal estimation (as of im-
age components).
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F1G. 2. (a) Simulated spin-warp image, inverse filtered, of computed phan-
tom (see Fig. 10). (b) Simulated spin-warp image, with “matched filtering”
(multiplication of FID by exp[ — ¢ /T,]). Sensitivity, in terms of total signal-
to-noise ratio, is improved in Fig. 2(b). Due to loss of high-frequency infor-
mation, however, visual quality of image is degraded.

An imaging method which produced the image in Fig. 2(a)
would be judged by this definition of sensitivity to have
poorer sensitivity than the method which produced Fig. 2(b),
despite the fact that Fig. 2(b) contains demonstrably less use-
ful information than Fig. 2(a).

Sensitivity as defined by Brunner and Ernst, then, is of
limited value in comparing imaging techniques, especially
when the techniques have significantly different transfer
functions. More detailed and potentially more useful mea-
sures of image quality and imaging performance are avail-
able in the discrete spatial-frequency estimation means and
variances of Egs. (9)—(13).

Let us restrict our attention for now to those methods
which satisfy the above sampling requirements and also
sample in a rectangular or in a nearly rectangular array, so
that interpolation is not necessary. For these methods the
line segments over which F (k) is sampled correspond directly
to discrete spatial-frequency coordinates q (see Fig. 3).

In general, & trajectories may have vector time derivatives
dk (t)/dt which vary in magnitude and direction. In other
words, the k trajectory may describe a pathin [k (¢), # ] space
with curves in its projection on the k space, and its slope with
respect to k space may also change arbitrarily (see Fig. 4).

If the rate of scan varies during the FID, the method’s
relative sensitivity and relative accuracy with respect to dif-
ferent spatial frequencies will vary accordingly. To see why
this is so, consider the transfer function H (q) of Egs. (7) and
(8), and considera k trajectory which scans parallel to a coor-
dinate axis. In this special situation (which occurs frequently
in practice—see Sec. III),

Hq) = AAt, exp( — 1,/ Ts), (15)

where g is a scalar (¢ = 0,1,...,@).
The relative sensitivity of the method to the gth frequency
component is given by [see Eq. (11)]

H,(q) Hq) = AAt, exp( — 1,/T;) H,{q). (16)

The square estimate error from Eq. (13} can be written for
this one-dimensional case as
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FiG. 3. The discrete spatial-frequency distribution F,(q) corresponds to
samples of the continuous-variable distribution F (k). For methods in which
the & plane is scanned parallel to the &, ..., sampling is impulsive in k, and
integrated in rectangular segments in k,, as indicated here by the shaded
areas.

FI1G. 4. An arbitrary &k trajectory passing above the spatial-frequency (k)
plane, with sampling path on the k plane indicated by the dashed line. At
time 7, the complex FID s(r ) is a sample of the k-domain distribution F (k) at
ki ), but weighted by theexponential decay exp( — ¢ /75). Whered | k (t)|/dt
(equivalently, the gradient magnitude) is small, the trajectory “rises” at a
more rapid rate, devoting a larger segment in time to sampling the corre-
sponding segment of k space, thereby sampling that k location more accura-
tely.
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E(|F..@*} =1[1 - H,(9) H )] F.(@)
+ | H,(g)|* var(V(g)}, (17)

where it will be recalled that var{ ¥'(g)} is proportional to the
integration time 4¢,.

This one-dimensional analysis can be extended easily to
two- or three-dimensional cases where the sampling grid is
rectangular (Sec. III C).

There are two types of generalized Fourier methods in
which the sampling grid is not rectangular. Some rapid
imaging methods (e.g., variations of the echo-planar method)
sample on oblique raster lines or on sinusoidal tracks in the &
plane, and hence require interpolation before Fourier inver-
sion can be applied properly. The influence of sampling sen-
sitivity on image quality will depend in this case on the ade-
quacy of the sampling pattern itself.

The reconstruction from projections methods sample the
k plane along radial lines. Suppose these radial lines are
spaced evenly through all angles. So long as we do not at-
tempt to reconstruct the image with azimuthal spatial fre-
quencies beyond the limits of the data (i.¢., beyond that sup-
ported by the number of projections), a reconstruction
algorithm in theory can determine uniquely the original con-
tinuous (band-limited) distribution.”®

The effects of varying sampling sensitivity in these meth-
ods are seen more easily if the functions are expressed in
cylindrical expansions. Instead of grouping the sample data
along radial lines as they are acquired, consider them
grouped into annuli in the & plane. It has been shown?**°
that reconstructing from projections is equivalent to esti-
mating the coefficients in a one-dimensional harmonic ex-
pansion around each such annulus in turn, then assembling
all the harmonic expansions and transforming to obtain the
desired reconstructed image.

Viewed in this way, the radially decreasing system func-
tion of NMR reconstruction from projections imaging acts
to decrease the accuracy of representation for those image
components with higher radial spatial frequencies. We will
not pursue this further, but note that it should be possible to
compare directly the spatial frequency performance of re-
construction from projections methods with that of rectan-
gular sampling grid methods by transforming (perhaps with
some difficulty) between the Cartesian Fourier expansion
and the cylindrical expansions used by Crowther et al.*°

lll. GENERALIZED FOURIER NMR IMAGING
METHODS

A. Effective transfer functions

The last section presented a general description of the gen-
eralized Fourier NMR imaging methods. In this section, we
discuss specific imaging techniques, including several of the
established methods and several proposed methods. (The ef-
fective transfer functions for these methods are presented in
Table I.) We will consider the two-dimensional case for sim-
plicity.

To discuss the specifics of spatial-frequency performance
for different NMR imaging methods, we must define the
details of the timing of the gradient and sampling intervals
within the FID. The time intervals involved are indicated
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TaBLE L Parameters of approximate discrete transfer functions for general-
ized Fourier NMR imaging methods.

k, = highest k-value sampled
g.. g, = discrete spatial-frequency coordinates
N = dimension of (square) sampling array
T,; = delay for “‘ring-down” period
G,, G, = constant x- and y-gradient magnitudes
{T,} = fixed duration of phase-encoding y gradient

Hig)=A A4t exp(—t,/T))
Method t, 4t,

Original (r-T,—4q,/G,)/N

Fourier*
Spinwarp {7,} + T, + (¢./G.)k/N

(9./G, +4,/G, )k /N

(T—T, ~ (T,}UN

R.F.P. (& + 41"k, /GN (T—-T,/N
Rectilinear, echo planar
l9. + Nig, — )]T/N T/N, q, even
[(N—qg)+ N, —1)T/N T/N, g, odd

*The form for rotating-frame zeugmatography'* i7 essentially similar; see
the text.

schematically in Fig. 5.

The period immediately following the excitation pulse is
not usually available for sampling the FID signal, since the
pulse itself may leave a decaying but significant signal in the
receiver coil (Fig. 5). Following this “ring-down” period, the
reconstruction from projections method begins sampling
immediately, but most other methods must postpone sam-
pling until after preliminary gradient phase-encoding per-
iods, thus sacrificing a portion (T, = T, + T,) of the FID
and losing sensitivity.

For the original Fourier method, the duration of the
phase-encoding period is variable, since a constant gradient
1s used to drive the k trajectory to various &, values.

In the spin-warp method, phase-encoding duration is con-
stant for all FIDs; the amplitude of the gradient pulse is

A/
Gy
Gx
FID {
0

Fi1G. 5. Timing relationships during a single FID of a simplified spin-warp
method in which selective irradiation for plane selection is not used. G, and
G, denote the x and y gradients, respectively; the pulsed G, accomplishes
phase encoding. A preliminary ring-down period 7, and phase-encoding
period 7, precede the period devoted to FID sampling, which extends to a
time T.
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altered rather than its duration. Constant-duration phase
encoding reduces the adverse effects of field inhomogeneity
on the image.®

For the single-FID methods, which do not require phase
encoding, the A-plane scan begins immediately following the
ring-down period.

The “rotating-frame” methods of Hoult'* accomplish
phase-encoding by means of radio-frequency gradients rath-
er than static field gradients, but a similar variable period
prior to data acquisition must be devoted to phase encoding
in this case as well.

Figure 6 depicts typical k trajectories for these methods
and others. The relative two-dimensional transfer functions
and error variance functions which result are shown graphi-
cally in Fig. 7 for a common set of conditions.

There are many types of restoration and enhancement
filters which could be used in NMR imaging. The most com-
monly used filtering methods correspond to discrete convo-
lution in the spatial domain: i.e., they are linear and shift
invariant, so that such discrete filters can always be repre-
sented exactly by a frequency-domain response function
H,(q). The inverse filter assures that the final frequency-do-
main image F, (q) will be unbiased; i.e., the value expected for
each of the ¢ components is the actual value of that compo-
nent. For faithful rendition of the original object, the inverse
filter is the ideal filter in the noise-free limit. As the amount
of noise in the input data is increased, the signal-to-noise
ratios of the higher spatial frequencies are generally the first
to become unacceptably low. In order to suppress the higher
spatial frequencies now dominated by noise, a low-pass filter
is usually used.

In NMR imaging, as in imaging by typical optical sys-
tems, transfer functions H (q) tend to attenuate high spatial
frequencies more than low frequencies. The unfiltered image
Fy(q), then, has under-represented high frequencies and a
levelnoise distribution ¥ {q). Thus at progressively larger val-
ues of |q|, the signal-to-noise ratios tend to decrease until
F,(q) has an unacceptably large error variance. Nothing is
gained by representing these components in the final im-
age—they are dominated by noise.

A common strategy of linear enhancement filtering,
then, is to restore those components attenuated by H (g) but
which retain adequate signal-to-noise ratios, and to attenu-
ate strongly those higher frequency components with insuf-
ficient signal-to-noise ratios. This type of filter is in effect a
combined low-pass and inverse filter.

If a fixed amount of time is available in which to image by
one of the generalized Fourier NMR imaging methods, that
time must be devoted to sampling an appropriate range of
spatial frequencies at an appropriate sampling density, as we
saw in Sec. I. Within this fixed period, each discrete spatial
frequency has its own effective signal-averaging time, and as
we suggested earlier, the allocation of sampling time among
the spatial frequencies determines the relative accuracy with
which the spatial-frequency components are measured.
Thus by altering gradients and sampling rates appropriately,
one can control the functional dependence of both H (q) and

Ves(a)-
The potential value of this control in NMR imaging is that

26,27

Medical Physics, Vol. 10, No. 5, Sep/Oct 1983

gt

! \mnmmmmm||
il IHiN
I

‘ \
TL H
a k‘ b kx
t

it

i
d Ky

t t ,
I W
, i

e ky f Ky

FIG. 6. k trajectories for several NMR imaging methods: (a) the original
Fourier method (Ref. 5), (b) the spin-warp method (Ref. 6), (c) the recon-
struction from projections method (Refs. 7 and 9), (d) the echo-planar meth-
od (Refs. 10~12), (e} a sinusoidal modification of the echo-planar method
(Ref. 14}, (f) the method of Creyghton et al. (Ref. 16), and (g} a proposed
rectilinear scanning method. The last four methods may be used to produce
a complete image (without regard to signal-to-noise considerations) during
a single FID.

in effect, a greater amount of useful information regarding
the object can be placed into the data per unit time than is
possible when constant gradients and uniform sampling per-
iods are used.

Allocation of signal-averaging time among spatial fre-
quencies is most easily accomplished among the spatial fre-
quencies located along a single FID—on a single k trajec-
tory. For methods which use multiple FIDs, allocation of
signal-averaging time among components occurring on sep-
arate FIDs must be accomplished, in general, by repeatedly
sampling the same locations. For single-FID methods, the
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F16. 7. Schematic depictions of transfer functions H {g), demonstrating spa-
tial-frequency sensitivity of several methods: {a) the spin-warp method [Fig.
6(b}], (b) the original Fourier method [Fig. 6(a)}, (c) the reconstruction from
projections methods, and {d) the single-FID techniques, in which the &
plane is scanned slowly in the k, direction and rapidly in the &, direction. In
methods for which negative g, values are sampled, H(g,,q,)

=H(~-4q,4q,).

entire k plane is sampled by a single & trajectory, so that
choosing 4z, and 1, for all ¢ is a straightforward matter.

As indicated by Eq. {15) and Fig. 7, the high-frequency
insensitivity of those generalized Fourier methods with con-
stant gradients is dependent on the duration of the sampling
time (T — T,) relative to the transverse relaxation time 7,. If
the sampling time is short with respect to 7>, the domination
of the transfer function by low frequencies, and the concomi-
tant imaging performance problems, might seem to be eli-
minated. However, as sampling times (7 — 7,} become
briefer, the effective signal-averaging time and signal-to-
noise ratio are reduced for all components. Thus, even for
lower frequencies, methods using longer sampling times
(e.8., T =2T,) and nonlinear k trajectories to achieve im-
proved spatial-frequency response retain a theoretical per-
formance advantage over constant gradient, brief acquisi-
tion methods. [Equations (22) and (23) can be used to show
that at k = 0, sampling time with constant gradient must
exceed 77,/2 to equal the accuracy of the equal error variance
(EEV) method with 27, sampling time.]

B. Echoes

In all cases, it simplifies data processing to have the k
trajectory crossing one of the k axes at the beginning of the
sampling. This is accomplished by a preliminary “dephas-
ing” gradient pulse® which produces an echo in the FID
signal at the beginning of sampling.

Complete sampling of the pertinent regions of the k plane
demands that low spatial frequencies near the & axes and the
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origin be sampled; eliciting echoes either at the beginning of
the sampling period® or during the sampling period'"'? can
help accomplish this. Sampling directly at the origin of k
space is not possible with a constant gradient which is begun
before the rf pulse, a usual arrangement in the reconstruc-
tion from projections method.”

Echo planar methods'®'? and similar methods'*° like-
wise use echoes during a single FID which scans the required
portion of the k plane. In this case, the echoes are elicited
repeatedly (either by reversing gradients or by applying 180°
pulses)asthek trajectory recrosses the k, axisat successively
larger values of &, as seen in Fig. 8.

It is not true that eliciting echoes enhances imaging sensi-
tivity. The echo signal simply corresponds to the local maxi-
mum in |F[k]| which occurs at k, = O for fixed k, because
f(x]is real and positive. The same total acquisition time must
still be apportioned somehow among the spatial-frequency
components.

C. The equal error variance method

Under many (if not most) circumstances, an unbiased im-
age would be desirable. This type of image would correspond
most closely, in the mean, to the original distribution. Thus
imaging methods are of interest which use inverse filters
Hr,,(q) in conjunction with whatever the imaging transfer
function H (q) might be.

As was shown in Sec. II, the error variance function V_, (g)
and expected error bias can be simultaneously specified, so
that there exists in theory an unbiased imaging method with
any shape error variance function we desire.

One unbiased method of particular interest is the equal
error variance method, which has equal rms error expected
for each frequency component. This seems to offer an im-
provement over the conventional methods, in which error
variance increases with frequency while the expected magni-
tude of the frequency components (for typical images) de-
creases in general with frequency.

For this method, the unbiased estimate error variance [the
second term on the right-hand side of Eq. {17)] is constant for
all g. Thus,

| H,(q)|* var {F(g)} = C, (18)

where C is a constant, for all g. Because the method is unbi-

AF(K)

Fi16. 8. Echo production viewed as the return of the k trajectory across the
k, axis, where the magnitude of the Fourier-domain object distribution
F(k)—and hence the signal s{f }—reach a local maximum. The sawtooth k
trajectory shown is that of the echo-planar method [see Fig. 6(d)].
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ased, Hrlg) = 1/H (g), where H (q) is given by Eq. (15). Since
var {V'(q)} is just o} Az, (where o is the unweighted noise
variance of the gth component), we then have

o, At,/[A%Ar] exp(—2t,/T,)] =C (19)
or for noise stationary in g,
A 774t 7 exp(2t, /Ty =C", (20)

where C’ has absorbed the constant o {note the equal error
variance solution will be different for correlated or nonsta-
tionary noise). The method we seek uses a gradient which is a
continuous function of time, so we consider the limiting case
of small increments A¢, and obtain

dk (t)/dt = C” exp( — 2t /T)) (21)

for the condition on the & trajectory corresponding to equal
error variance. Since the gradient field is proportional to dk /
dt, this result gives the form of the necessary gradient time
dependence directly. Although Eq. (21) describes a scalar
function k (¢ ), it applies directly to two- and three-dimension-
al cases as well if the vector magnitude |k(z )] is used in place
of k().

Figure 9 is a plot of the k, dependence of the estimate
error variance computed for the spin-warp method and the
EEV modification of the spin-warp method. Note that in
absolute terms, the EEV image errors will be larger for lower
frequencies than the spin-warp errors, but that EEV errors
will be smaller at higher frequencies. Thus, unneeded accu-
racy at low frequencies is traded for desired accuracy at
higher frequencies.

This can be demonstrated quantitatively by considering
the k,, dependence of the error variance (which is constant in
k, for the spin-warp and EEV/spin-warp methods). From
Eq. (17) it can be shown that in the continuous-variable limit
(as Q— <o), spin-warp error variance becomes

k
Vik)=A4 %" —Tf- exp[2kT /k,T,], (22)

and the EEV error variance becomes

20.0
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FI6. 9. Ratio Ry, sz Of estimate error variance of the spin-warp method to
that of the EEV method, plotted logarithmically as a function of k, {the
ratio is constant in &, ). The longer the sampling period T extends relative to

T, the more marked becomes the advantage in high spatial frequency accu-
racy of the EEV method.
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2k
V. k)=A -2027!- [1—exp(—2T/T,)] " (23)
2
The ratio of the spin-warp to EEV error variances is

R eev = —2% [1— exp( — 2T /T,)] exp(2kT /k,T>),
24)

which is plotted in Fig. 9 for T/T, = 0.2, 1, and 2. It can be
shown that the ratio of integrated error variances is just

f VY i / VEEY gk — [sinh (—TT—) / (?T)r
2 2 (25)

For the (T /T,) values of 0.2, 1, and 2, the ratio (spin warp to
EEV)ofintegrated error variances is 1.013, 1.381, and 3.289,
respectively, indicating the performance advantage of the
EEV method becomes more appreciable for FID acquisition
times 7" long with respect to 7.

Figure 10 presents the results of preliminary simulation
studies including the tracking bandwidth and constant
bandwidth implementations of the EEV method, along with
the spin-warp method unfiltered, inverse filtered, and Wie-
ner filtered. The Wiener*?”° filter represents a combina-
tion inverse and low-pass filter which takes into account sev-
eral pieces of a priori information: the system transfer
function H, the noise power spectrum, and the object power
spectrum. The last is not likely to be available in practice,
since the object distribution is usually assumed entirely un-
known, so that the Wiener filter could not perform in prac-
tice as well as it does here, supplied with the correct object
spectrum. The Wiener filtered image is intended to represent
the “best” image one could reasonably expect from the spin-
warp method under the conditions of this simulation, and is
included only for purposes of comparison.

Note that low-contrast details are more readily discern-
ible in the EEV images than in the spin-warp image, indicat-
ing that the increased information (i.e., reduced uncertainty)
in the higher spatial frequencies indeed has a visually signifi-
cant effect.

The EEV method serves as a useful example in discussing
some of the technical problems to be anticipated in methods
with time-varying gradients. One of these is noise band-
width. Because the gradient for the EEV method decreases
exponentially in time, the bandwidth occupied by the useful
image data decreases exponentially in time as well. Clearly,
if the spin-warp method and the EEV method both acquire
FID data until 27, has elapsed, they will have reached the
same point in k space at the time 27,. In doing so, however,
the EEV gradient will begin at a higher value than the con-
stant spin-warp gradient, but will end at a lower value. Since
the signal bandwidth is proportional to the gradient, the sig-
nal bandwidth will begin with a large value and decrease toa
small value. To minimize the noise introduced into the digi-
tized FID, then, the bandwidth of the analog filter preceding
the ADCs should track the signal bandwidth throughout the
FID. Unfortunately, special purpose hardware to accom-
plish this may not be readily available, so that one must use a
constant bandwidth filter set at the maximum required sig-
nal bandwidth of the EEV method, which occurs at the be-
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d)

e)

F1G. 10. Simulated 64 X 64 NMR images demonstrating contrast and noise
level differences in standard spin-warp and EEV modified methods: (a)
phantom image with no noise. Small squares have constant level; back-
ground increases radially from center. (b) Spin warp with no filtering, (c)
spin warp with inverse filter, (d) spin warp with Wiener filter, (¢) EEV with
bandwidth tracking, and (f) EEV with constant bandwidth. Noise was un-
correlated and Gaussian, and data acquisition period T = 27, in all cases.
Simulation was performed using Perkin—Elmer 3220 computer with Gen-
isco display system.

ginning of the FID.

In both the tracking bandwidth and the constant band-
width implementations of the EEV method, high-frequency
representation accuracy is theoretically superior to that of
the conventional methods which use constant gradients and
uniform sampling intervals [see Eq. (24) and Fig. 9].

The nonuniform sampling intervals made necessary by
the changing & trajectory scanning rate also require special
attention. In practice, the nonuniform sampling intervals
may be realized by sampling at a higher rate than would be
required normally, then recombining the samples over vary-
ing time intervals so that the & interval sampled is relatively
constant. Multiplication of each composite datum by an ap-
propriate fixed factor would compensate for errors due to
discretization of the time intervals.
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D. The single-FID methods

In some applications of NMR imaging, it is important—
even essential—to form an image in the briefest possible peri-
od."""'? Among the reasons for this are (1) to minimize the
effects of organ motion, and (2) to increase the number of
imaging studies that can be done within a given length of
time.

Largely because of these considerations, imaging methods
have been developed''~'® which allow a reduction in mini-
mum performance time by scanning the & plane during a
single FID.

Just as k trajectories may be used which traverse the k&
plane at variable rates, so k trajectories may also describe
any of an infinite number of possible sampling pathways on
the k plane which satisfy the basic sampling requirements.
Single-FID pathways satisfying these requirements could
describe spirals, or curvilinear, rectilinear, or sawtooth ras-
ter patterns on the k plane (see Fig. 6). Individually, the ad-
vantages and disadvantages of these will be in terms of the
practical difficulties in driving rapidly changing gradient
waveforms and in the complexity of processing (decoding)
the data.

Although the data processing necessary for image forma-
tion may be simpler for sawtooth and rectilinear & trajector-
ies, the gradient-driving hardware must sustain larger high-
frequency components. For the curvilinear & trajectories, on
the other hand, technical difficulties in implementation will
tend to be computational rather than instrumental, since
these methods should have additional interpolation compu-
tations prior to Fourier inversion for best results. Although
images can be produced from the sawtooth scan of the echo-
planar method without benefit of interpolation, image qua-
lity may be somewhat degraded thereby. The method of
Creyghton et al.'® [Fig. 6(f)], when odd-numbered echoes are
ignored, samples on a rectangular grid, so it is not necessary
to interpolate to avoid image distortion. By using 180° pulses
to reverse the k trajectory, large-magnitude switched gradi-
ents are avoided.

Alternative methods scanning the k¥ domain in a rectilin-
ear fashion may have some advantages. The method of Fig.
6(g), for instance, would allow somewhat more efficient use
of the time available for sampling.

When these methods are implemented in such a way as to
acquire all data within a period much shorter than T, (as
might be desirable in gated cardiac imaging, for instance),
the transfer function is essentially uniform in frequency
though sensitivity for each frequency is reduced. Thus in the
inverse-filtered implementation, these methods will have ap-
proximately the unbiased and equal error variance proper-
ties discussed above, even if the gradient magnitude is con-
stant while the FID is sampled.

When one of these methods scans the k plane in a time
comparable to T,, however, the transfer function will de-
crease exponentially along the track of the k¥ trajectory—it
will have approximately the shape of the transfer function
for the spin-warp method. Thus neglecting effects of nonuni-
form sampling (which occurs for the curvilinear and saw-
tooth-type k trajectories), the performance characteristics
will be nearly the same as for the spin-warp method.
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E. Imaging methods which are “optimal estimators”

Another group of generalized Fourier NMR imaging
methods of particular interest are the methods which corre-
spond to optimal estimators of the distribution F,(q).

NMR imaging is an estimation process in the sense that
one would like the final image to be a good estimate of the
continuous distribution f(x). The term estimate is used here
to indicate that the image should match the object in some
precisely defined sense, and also because the relationships
we have observed between the image distribution and the
object distributions in the spatial-frequency domain are
identical to those of the classical linear estimation problem.
This correspondence between NMR imaging and the esti-
mation problem implies that useful results of estimation the-
ory may be applied directly to the problem of NMR imaging.

Through Egs. (16) and (17), the net relative sensitivity and
accuracy of an imaging method’s spatial-frequency response
can be determined from its X trajectories and its sampling
scheme. Moreover, we can now derive new imaging methods
with desired spatial-frequency characteristics.

Specifically, by choosing the sampling sequence 7,
(g = 0,1,..,N — 1) during the available acquisition period of
the FID, and by selecting the restoration filter coefficients
H,(g), we can choose in effect the net transfer function {or
alternatively, the error bias) via Eq. (16), and the net estima-
tion error variance profile via Eq. (17).

Optimal image processing techniques have often been
used in biomedical imaging applications.?>**3* Optimal
NMR imaging, however, implies something more than opti-
mal processing of already existing digital images. In NMR
imaging, the data acquisition process itself may be designed
to preferentially gather the information of most importance.
Thus in an optimal NMR imaging method, both the process-
ing and the encoding are optimal.

As a result, there is more to be gained in terms of perfor-
mance by using optimal NMR imaging methods than can be
gained in other medical imaging methods by optimal image
processing alone.

There are two categories of optimality criteria we might
seek to maximize in NMR imaging. We could look for the
imaging method which achieves the best image quality in
terms of some statistical measure such as least-square error.
On the other hand, we could look for the method which will
produce images with the best diagnostic “readability,” based
on some model of the visual diagnostic interpretation pro-
cess, perhaps specific to a given diagnostic task (such as the
“Rose model” ** applied to detection of low-contrast le-
sions).

Established techniques of optimal estimation®' and opti-
mization®* may also allow us to determine optimal methods
for cases in which noise is correlated with itself or with the
object, and in which system constraints are considered (for
instance, when gradient fields or their rates of change must
be limited in range due to hardware restrictions). In theory,
the k-trajectory formulation permits one to derive an imag-
ing method optimal with respect to any performance crite-
rion expressible in k-domain terms, while considering effects
of practical matters such as hardware imposed or software
imposed constraints, or a priori knowledge of the noise pow-
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er spectrum or the object distributions to be expected.

There is, of course, no guarantee that for a given set of
design specifications (i.e., optimality criterion, constraints,
and a priori knowledge of noise and object distribution) the
resulting optimal method will perform substantially better
than one of the conventional nonoptimal methods, but the
apparent performance advantages of the EEV method sug-
gest that in many cases it will.

The equal error variance method is a simple example of an
optimal method; it can be shown that the EEV method is the
unbiased estimator optimal in the minimum variance sense
for uncorrelated noise.

IV. SUMMARY AND CONCLUSIONS

The purpose of this communication has been to present an
alternative theoretical view of the process of NMR imaging,
together with some of its applications. This model applies to
most existing NMR imaging methods, as well as a large
number of untried but potentially workable methods.

Whereas the conventional model of NMR imaging
centers on the correspondence between the spectrum of the
transient response (the FID) and projections of the unknown
spatial distribution, the k-trajectory model views the FID
itself as a noisy observation of the spatial-frequency distribu-
tion which is the Fourier transform of the unknown spatial
distribution to be imaged. (Both views are correct, but the k-
trajectory view may be more useful in some respects.)

The k trajectory is simply the path in spatial-frequency
space over which the sampling process occurs, and it is com-
pletely determined by the gradient fields applied during the
FID. Any k trajectory or set of k trajectories which scans an
appropriate region of the spatial-frequency domain can be
used to produce an image. The rapid imaging methods can
form an image from data acquired during a single FID, using
a single k trajectory to scan the spatial-frequency domain.

Although it gives an intuitively useful graphic depiction of
the imaging process, the major potential value of the k-tra-
Jjectory model lies in its ability to account quantitatively for
the influence of relaxation times, time-varying gradients,
and FID sampling schemes on image quality. Not only does
this permit analysis of theoretical imaging performance for
existing methods, but it also permits prediction of imaging
performance for proposed imaging methods with arbitrary
time-varying gradients and FID sampling schemes. This lat-
ter property in turn allows synthesis of new imaging meth-
ods with specified imaging performance characteristics.

In generalized Fourier methods optimal for a given per-
formance criterion, performance may be significantly better
than in existing imaging methods. This is true especially for
performance criteria in which accuracy of higher spatial-
frequency rendition is important, since most existing meth-
ods overemphasize accuracy of low-frequency rendition at
the cost of accuracy in the higher frequencies.

Note that image processing can alter the magnitude of
various image spatial frequencies, but not the accuracy with
which they are represented. This relative accuracy is deter-
mined in generalized Fourier NMR imaging by the time de-
pendence of the applied gradient fields. That is, once image
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data has been acquired, we cannot improve its information
content, no matter what processing method we try. But by
manipulating gradients judiciously, and keeping track of
where in the & domain we are sampling at each moment, we
may preferentially acquire the image information of most
concern.

Perhaps the most meaningful measures of imaging perfor-
mance for biomedical applications are based on models of
visual interpretation, rather than on purely statistical con-
siderations. Short of this, an intuitively reasonable perfor-
mance specification would be equally accurate representa-
tion of all spatial frequencies, rather than the bias in
accuracy (i.e., information) toward the lower spatial frequen-
cies exhibited by most existing NMR imaging methods.

This latter requirement can be achieved readily in NMR
imaging, simply by using exponentially decaying gradient
fields, and an appropriate FID sampling schedule, as we
have shown in the discussion of the EEV methods. Compari-
sons of simulated NMR images seem to verify visual con-
trast and rendition of details are significantly better in the
EEV images than in unfiltered or optimally filtered “conven-
tional” {constant gradient) NMR images.

The k-trajectory description and the techniques of analy-
sis and synthesis to which it gives rise are general. They can
be applied to imaging methods which use any type of plane
selection, multiple-pulse sequences (for relaxation time
imaging), in two- or three-dimensional applications, and in
single-FID rapid imaging implementation or multiple-FID
implementations.

At least for the simpler examples of derived generalized
Fourier NMR imaging methods, implementation will not
place great additional demands on gradient hardware or
data handling software. In fact, some existing instruments
should be capable of imaging with these methods with minor
software modifications alone.

The k-trajectory formulation and the linear discrete imag-
ing model developed here appear to provide powerful but
practical tools for analyzing the theoretical performance of
NMR imaging methods in detail, and for designing new
NMR imaging methods with optimal performance in any
desired sense and in the presence of instrumental and other
technical constraints.
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