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Parameter Relations for the Shinnar-Le Roux
Selective Excitation Pulse Design Algorithm

John Pauly, Member, IEEE, Patrick Le Roux, Dwight Nishimura, Member, IEEE, and
Albert Macovski, Fellow, IEEE

Abstract—Selective excitation pulses are used in magnetic resonance
imaging (MRI) to isolate a specific slice through the subject. The pulse
design problem is in general nonlinear due to the nonlinearity of the
Bloch equation. Recently a direct solution has been proposed by Shin-
nar and his co-workers [1]-[6], and Le Roux [7]-[9].

In this paper we first present an overview of the Shinnar-Le Roux
(SLR) algorithm. We then show how the performance of SLR pulses
can be very accurately specified analytically. This is useful because it
tells how to design a pulse that produces a specified slice profile. More
importantly, it allows the pulse designer to trade-off analytically the
parameters describing the pulse performance. We present several ex-
amples to illustrate the more important trade-offs. These include lin-
ear-phase and i and maxi -phase pulses. Linear-phase
pulses can be refocused with a gradient reversal, and can be used as
spin-echo pulses. Minimum- and maximum-phase pulses have better
slice profiles, but cannot be completely refocused.

I. INTRODUCTION

AGNETIC resonance imaging (MRI) is inherently a vol-

ume imaging modality. Spatially selective RF pulses re-
strict this volume to a thin slab of material, which can then be
resolved in the two remaining directions to produce a two-di-
mensional image. The RF pulse design problem is in general
nonlinear due to the nonlinearity of the Bloch equation. For
small-tip-angle pulses a Fourier analysis can be used [10], [11].
These pulses continue to perform reasonably well for tip angles
on the order of 7 /2. Better = /2 pulses can be designed using
optimization methods. For tip angles of 7, optimized pulses are
essential for good slice profiles [12]-[16].

Recently a new method for slice selective pulse design has
been proposed independently by Shinnar and his co-workers [1]-
[6], and Le Roux [7]-{9]. It is based on a discrete approxima-
tion to the spin domain version of the Bloch equation. The RF
pulse design problem can then be mapped into a digital filter
design problem, which can be solved using well-known algo-
rithms. The resulting digital filter is then mapped back into an
RF pulse.

In the first part of the paper we present a brief overview of
the Shinnar-Le Roux (SLR) algorithm. Enough detail is pre-
sented to allow the reader to implement the algorithm.

The main part of the paper concerns the specification of the
slice profile produced by an SLR pulse. Simple analytic expres-
sions relate the transition width, in-slice ripple, out-of-slice rip-
ple, and time-bandwidth product. These relationships also show
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how to design a pulse that achieves the predicted theoretical
performance. Previously pulse sequences had to be designed
around available RF pulses. Now RF pulse design can be an
integral part of pulse sequence design.

To illustrate the nature of the slice profile trade-offs we pre-
sent several pulse design examples. The case of a slice-selective
/2 pulse is considered in some detail. Then examples illus-
trating the design of inversion, spin-echo, and saturation pulses
are presented.

These examples include both linear-phase, and minimum- and
maximum-phase pulses. A linear-phase /2 pulse can be re-
focused with a gradient reversal, and a linear-phase 7 pulse can
be used as a spin-echo pulse. The additional constraint of re-
quiring linear phase has a cost in slice profile. If this constraint
is eliminated better slice-profiles can be obtained. We present
examples of minimum-phase and maximum-phase (reversed
minimum-phase) pulses that have significantly better slice pro-
files than the corresponding linear-phase pulses. These are use-
ful when slice-profile phase is unimportant, such as inversion
or saturation pulses.

II. THE SHINNAR-LE ROUX ALGORITHM

The Bloch equation reduces to a rotation if relaxation effects
are neglected. The solution to the Bloch equation is then the
initial magnetization multiplied by a 3 X 3 orthonormal matrix.
This rotation can also be represented by a2 X 2 unitary matrix,
the so-called spin-domain representation. The SLR algorithm is
based on a discrete approximation to the spin domain version
of the Bloch equation. This further simplifies the solution of the
Bloch equation to the design of two polynomials. RF pulse de-
sign becomes a polynomial design problem, which can be solved
using well-known digital filter design algorithms.

A. Spin Domain Bloch Equation

The Bloch equation, neglecting relaxation, is given by

M, 0 Gx -8B, M,
M, )= -Gx 0 B, . M,
M, B, -B,,. O M,

where B, = B, , + iB, , is the applied time varying RF field,
and G is the gradient amplitude. The gradient is assumed to lie
along the +x axis. The solution to this equation is a rotation

M(T) = RM(0)

where R is a 3 X 3 orthonormal matrix. If a sequence of n
pulses has been applied, the solution is the product of the in-
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dividual rotations R,
R=RR,_, "R,

These rotations can also be represented by 2 X 2 unitary ma-

trices
a —f*
- (; %)
B o*

where « and @ are the Cayley-Klein parameters
a = cos ¢/2 — in,sin ¢ /2 (1)
B = —~i(n, + in,) sin ¢/2. (2)

The vector n is the axis of the rotation and ¢ is the rotation
angle. These spin matrices multiply just as the 3 X 3 matrices
do. The Cayley-Klein parameters satisfy the constraint

aa* + BB* = 1. (3)

The spin matrices can be used to calculate the effect of an RF
pulse in the presence of a constant gradient. We assume that the
RF is piece-wise constant (illustrated in Fig. 1). This is a good
approximation to the way that RF waveforms are generated on
commercial imaging systems. If the jth RF sample has a com-
plex amplitude B, ; and a duration A¢, the rotation parameters

are
&, = —yArV B " + (Gx)
_ YAt
|91

The Cayley-Klein parameters for the jth interval are then

n; B, . ;. B Gx).

a; = cos ¢;/2 — in, ; sin ¢;/2
by = —i(n,; + in, ;) sin ¢,/2.

The spin-domain rotation matrix is then

and the total rotation produced by the pulse is
0=0,0,1 " Q1 (4)

Given the spin-domain representation of the rotation pro-
duced by a pulse, we can calculate the 3 X 3 rotation matrix by
inverting the expressions for the Cayley-Klein parameters.
Usually, though, the quantity of interest is the magnetization
produced given some initial condition. These are calculated
easily using the expression (adapted from [17])

M} (a*) —p 204 M
My = =(8*) o 20 Mg*
MZ —a*B* —aff aa* — BB* M-

where M, = M, + iM,.

There are a number of useful special cases. If the initial mag-
netization is the equilibrium magnetization M~ = (0, 0, M,)”,
the excitation slice profile is

M., = 20%8M, (5)
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Fig. 1. Piece-wise constant RF. This is a good approximation to the way
RF waveforms are generated on commercial imagers.

and the inversion slice profile is
M7 = (aa* — BB*)M,. (6)
For the spin-echo profile the initial magnetization is M~ =
(M, M;y*, 0)”. The spin-echo profile is then
M, = (*)'M,, — BM . (7)
If the initial magnetization is along the +y axis, this becomes
M3 = (o) + (BY)Mo- (8)

A case of considerable practical interest is of a spin-echo
pulse surrounded by crusher gradients. The crusher gradients
suppress the parasitic FID’s produced by the slice profile tran-
sition regions. A single crusher gradient produces a rotation
about the z axis of

o(x) = —x{'y S G(1) dt}.

The spin-domain rotation matrix for this rotation is

o~ i(x)/2 0
R.= 0 eio/2 )

The rotation produced by the spin-echo pulse surrounded by
crusher gradients is

ae—nb(x) _6*
R.RR, = .
¢ ‘ ﬂ a*euj)h)

The spin-echo pulse profile from (7) is
2 i2b(x)ng— 2.
M} = (a*) e M, — (B) ML

The crusher gradient leaves a large number of cycles of phase
twist across an imaged voxel. If we integrate over a voxel the
first term integrates to zero, leaving

M = M. (9)

Again, if the initial magnetization was along the +y axis, the
final magnetization produced by the crushed spin-echo pulse is
M} = i’M,. (10)

Once the Cayley-Klein parameters have been determined for
a selective excitation pulse it is easy to calculate any profile of
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interest. The spin domain description is an extremely conve-
nient representation for selective excitation pulses.

B. State-Space Description of Spin-Domain Rotations

The result of an RF pulse applied in the presence of a con-
stant gradient field can be calculated by multiplying 2 x 2
unitary matrices, as in (4). This matrix product has considerable
redundancy due to the symmetry of the spin-matrices, allowing
an even simpler representation. The state of the rotation at a
given point in the pulse sequence may be represented by a 2 x
1 complex vector. The matrix-matrix products are replaced by
matrix-vector products.

If we write out the sequence of matrix products of (4)

o, —BY
(%)
a, —b a; ~bf ay —by
=<bn a:>"'<b, ><b >
)
G2
B af

Multiplication of the matrices up to j produces the rotation Q.
From the structure of Q; it is apparent that two of the four en-
tries are redundant. The same information can be represented
by either column of the rotation matrix. We will choose the first

column, (; B;)”. The effect of the pulse may then be calculated
by propagating this vector

B b af)\B/)
This is a state-space description of the RF pulse. Since the ini-

tial state is no rotation, the initial condition can be found by
substituting a rotation angle ¢ = 0 into (1) and (2).

()~ ()

C. Hard-Pulse Approximation and the Forward SLR
Transform

The key step in the development of the SLR algorithm is the
so-called hard-pulse approximation [18]. With this approxima-
tion the state-space description can be reduced to two polyno-
mials. This mapping of an RF pulse into two complex
polynomials we call the forward SLR transform.

During an excitation pulse the magnetization is rotating about
the vector sum of the RF field and the local gradient field. The
basic idea of the hard-pulse approximation is that if the angle
is small the rotation can be modeled by two sequential rotations.
The first is free precession under the effect of the local gradient
field by an angle —yGxAt. The second is the rotation about the
applied RF vector by an angle —yB,Az.

If we write Q; as the product of the two sequential spin ma-

trices, we get
0 CJ —S,* ZI/Z 0
"\ ¢/\o v

where

G = cos (v|By ;|At/2)
S; = ie'“®'isin (v|B, ;|At/2)
z = e'o, (11)
The state-space recursion for the Cayley-Klein parameters then
becomes
%) _ nf G —sj*> <1 0 ><aj_l>
B; S; G (U Bf—l
Defining
4, =7/
B = 777, (12)
the recursion may be reduced to
B, S G /\0 z7'/\B_,
G -Srz'\[4_
= O ’ '). (13)
5 Gz'/\B,

Given that 4y = ap = 1 and By = B, = 0, the first two states
are
A, C,
()~ ()
A, G,C, — s;s,z">
<Bz> B <szc1 +GSz7' )

The Cayley-Klein parameters at the nth time step are (n — 1)
order polynomials in z ™'

n—1

A,(z) = Eo az”

n—1

B,(z) = 1§0 bz

where

Z—I - e_"’G‘A'.
The representation of the rotation produced by a selective ex-
citation pulse has been reduced from a product of n 3 X 3 ma-
trices to two (n — 1)-order polynomials.

The recursion given in (13) with the coefficients given in (11)
maps an RF pulse B,(7) into two complex polynomials 4,(z)
and B,(z). This mapping is the forward SLR transform. In the
small-tip-angle case the SLR transform reduces to the familiar
z-transform.

D. Inverse SLR Transform

Given two related polynomials 4,(z) and B,(z), the SLR
transform can be inverted to calculate the RF pulse that pro-
duces these polynomials. This is called the inverse SLR trans-
form. It is this inverse transform that reduces RF pulse design
to polynomial design.

The two (n — 1) order polynomials A,(z) and B, (z) must
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satisfy the frequency response (slice profile) amplitude con-
straint

4@ + B =1 (14)

for all complex z such that |z| = 1. This is (3) with the substi-
tutions indicated by (12). With this constraint the two polyno-
mials 4,(z) and B, (z) are valid representations of a rotation at
any position x and z = 'Y 4",

The inverse SLR transform is found by the inversion of the
state-space recursion. The forward recursion is

<A,.) <C, =S¥\ (4.,
B/ S/ Cjzﬂ B/*l A

The inverse recursion is found by multiplying both sides by the
inverse of the incremental rotation matrix, producing

<A,. G S!*> 4;
B;_ =8z Ciz/ \B;

N < CA; + S'B; >
2(=54; + GB)
Since the incremental rotation and its inverse are both unitary
matrices, the constraint of (14) is preserved, and the reduced-
order polynomials are also valid representations of a rotation
forall [z| = 1.

" At any stage of the backward recursion we know the coeffi-
cients of 4;(z) and B;(z). Since 4;_(z) and B;_,(z) are lower
order polynomials, the leading term in 4;_,(z) and the low-
order term in B;_,(z) must drop out

(15)

Cidjj-r + S/B -1 =0
—Si4;0 + CGBjo = 0.

These two equations are equivalent, as may be seen by expand-
ing (14) as a polynomial and noting that all except the constant
term are zero. The high-order term is
* —
A Al + B ;B = 0.
With this relation either equation may be derived from the other.
Here we choose the second equation to determine the RF.
The ratio of the low-order terms is
Bo_ S

40 G
ie™ sin ¢;/2

cos ¢;/2
where ¢; is the tip angle produced by this segment of the pulse,
and 6, is the RF phase. The rotation angle ¢; is then

i (B

¢; = 2 tan”
J A/.O

and the RF phase is
0; = 2(—iB;o/4;0).

The RF waveform is then

(16)
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This expression for the RF coupled with the backward recursion
of (15) constitute the inverse SLR transform.

Hence, there is a unique invertible transform relationship be-
tween an RF pulse and two polynomials 4,(z) and B,(z)

(1) (A,(2), B.(2).

This transform relationship makes RF pulse design equivalent
to the design of two complex polynomials. The design of these
polynomials is the subject of the rest of this paper.

E. RF Pulse Design by Polynomial Design

Thete are several different approaches that can be taken in
designing the polynomials 4, (z) and B, (z). One approach [1],
[2), [6], [7], [9] is to first approximate the magnetization com-
ponent of interest with a polynomial, and then factor it accord-
ing to the type of slice profile to solve for 4,(z) and B,(2).
The approach we will take here [7]-[9] uses the fact that
B, (e"79*4") is proportional to the sine of half the tip angle at
position x (2). B,(z) is designed to optimally approximate the
ideal slice profile. 4,(z) is then calculated to be consistent with
B,(z2), subject to the additional constraint that the resulting RF
pulse have minimum energy. Once 4,(z) and B, (z) have been
determined the RF pulse is found by the inverse SLR transform.

For the sake of concreteness assume we are designing a 7,/2
pulse about the x-axis. In this case the ideal B,(z) polynomial
evaluated at e 79" is

By(e"*") = i(n, + in,) sin ¢(x)/2
= isin ¢(x)/2
since n = (1, 0, 0)”. In-slice this is
B, (79" = isin /4 = iv2/2
while out-of-slice this is
B,(e™%*"y = isin0 = 0.

Given this ideal B,(z) we wish to find a polynomial approxi-
mation. There are many possible methods for designing this
polynomial. One powerful method is the Parks-McClellan (PM)
algorithm for the design of linear-phase finite impulse response
(FIR) digital filters [19]. The algorithm requires the specifica-
tion on the edges of the in-slice and out-of-slice regions, and
the relative ripples in each. These can be calculated fairly ex-
actly using the pulse design trade-off relationships that will be
presented below. The ideal B;(z) and a polynomial approxi-
mation both evaluated along the unit circle z = e are plot-
ted in Fig. 2.

Given the B,(z) polynomial we need to find a consistent
A,(z) polynomial. The constraint ca* + 6% = 1 means that
the magnitude of the 4,(z) polynomial is

|4.(2)| = ¥1 = B,(z) BX(2) (17)

again evaluated along the unit circle z = e'79*4 An additional
constraint is required to make the choice of 4,(z) unique. One
possibility is to choose 4,(z) to be a minimum-phase polyno-
mial. As was mentioned in [7], a minimum phase A, (z) results
in a minimum energy RF pulse.

The minimum-phase A4, (z) is easily found by noting that a
minimum-phase polynomial is an analytic signal [20]. Analytic
signals have the property that their log-magnitude and phase are
a Hilbert transform pair. Hence, the minimum-phase 4,(z) is

A, (z) = A,,(z)' exp [iSC {log A,,(z)l}]. (18)
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Fig. 2. Ideal B;(z) and the polynomial approximation produced by the PM
algorithm.

Here 3C{ -} is the Hilbert transform operator. The PM algo-
rithm gives the polynomial coefficients of B,(z). B,(z) must
then be evaluated on the unit circle, which can be done with a
DFT. The DFT order should be significantly larger than n to
reduce aliasing errors in subsequent calculations. Once B, (z)
has been calculated | 4,(z)| can be found using (17). This is
substituted into (18) to produce the minimum-phase polynomial
A,(2) as evaluated along the unit circle. The polynomial coef-
ficients are then found by an inverse DFT. Fig. 3 is a plot of
the minimum-phase A4,(z) as evaluated along the unit circle
corresponding to the B, (z) of Fig. 2.

The reason the minimum-phase 4,(z) corresponds to a min-
imum RF power is seen by examining the a, term of A4, (z).
From the forward recursion given in (13) it can be seen that a,
has the simple form

a, = GGy -+ GG
the product of the half angle cosines for all the incremental RF
rotations. These incremental rotations are all small. Using the
small angle approximation cos /2 = 1 — §°/8 the product can
be written

ao = (1 - 6,/8)(1 - 6,_,/8) -+~ (1 - 63/8)(1 — 63/8)

where 6, = y|B, ;| Ar. After multiplication the first two terms
are

2 ¢

j=0

ool —

a, =1 —

=1 - é('yAt)ZJZ_ZO [B,,|". (19)

The second term is proportional to the pulse’s average RF
power. Hence, the pulse with minimum RF power has the max-

imum a,. The polynomial with the maximum a, is the mini-

mum-phase polynomial [20], [21].

The RF waveform computed by the inverse SLR transform
of 4,(z) and B, (z) is plotted in Fig. 4, and its slice profile in
Fig. 5. Note that the ripples in-slice and out-of-slice are of con-
stant amplitude, and that the slice is very well refocused. The
M, ripple is larger in-slice because ten times more ripple was
allowed when the B, (z) polynomial was designed. The reason
for this, and for choosing the width and location of the transi-
tion bands will be the subject of the next two sections.
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Fig. 3. Minimum-phase 4, (z) corresponding to the B, (z) polynomial of
Fig. 2.
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Fig. 4. SLR x /2 pulse corresponding to the B,(z) and 4,,(z) polynomials
of Figs. 2 and 3.
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Fig. 5. Slice profile for the pulse plotted in Fig. 4.

III. PULSE DESIGN PARAMETER RELATIONS

The SLR algorithm reduces RF pulse design to the design of
a single polynomial B,(z). The Parks-McClellan algorithm
produces an optimal polynomial in the Chebyshev sense of min-
imizing the maximum ripple. As inputs it requires that the stop-
band and passband edges be specified, and that the relative
ripple amplitudes in each of these bands be given. Pulse design
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then consists of balancing the conflicting requirements for rip-
ple, transition bandwidth, pulse length, slice width, and RF
power.

The efficiency of the SLR algorithm allows RF pulses to be
designed iteratively. The calculation of a 128 point = /2 pulse
vakes about 10 s on a Sun 3/50. Slice profile parameters can be
iteratively optimized until a satisfactory design is achieved.

There is a better alternative. The characteristics of optimal
FIR filters have been studied in detail [19]. Empirical relation-
ships have been derived for the various filter design parameters.
With some modification these relationships can be used to pre-
dict the attainable performance of RF pulses. Once a desired
profile has been determined, the corresponding RF pulse is eas-
ily and rapidly computed.

The PM algorithm produces a linear-phase FIR filter. A lin-
ear-phase 7 /2 pulse can be refocused by a gradient reversal,
and a linear-phase 7 pulse can be used as a spin-echo pulse.
Optimal minimum-phase filters can be designed using the
method described in [22], [23]. These have better performance,
but at the cost of nonlinear phase response. When phase does
not matter, as for selective inversion or saturation, the pulses
based on minimum-phase filters will produce better slice pro-
files. Maximum-phase filters are also of interest. These are sim-
ply reversed minimum-phase filters.

A. Recasting the FIR Filter Parameter Relations

The parameter trade-offs for FIR filter design must be cast in
a different form to be useful for the design of RF pulses. In
particular the number of samples in the RF pulse is not ulti-
mately significant, while the time-bandwidth product of the RF
pulse is very important since it relates to the required RF power.

Fig. 6 illustrates the key parameters of the performance of an
FIR filter. The parameter §, is the amplitude of the passband
ripple, §, is the amplitude of the stopband ripple, F,, is the pass-
band edge, and F; is the stopband edge. The passband ampli-
tude is unity, and all frequencies are normalized to the Nyquist
frequency.

The empirical relationship between these parameters for an
optimal FIR filter, such as is designed by the PM algorithm, is
given by [19]

Do(81, 8,) = (N — 1)AF + £(8,, 8,)(AF)".

The parameter AF is the transition width F, — F,. The term
D, (6y, 8,) is an empirically derived performance measure of
the filter. The term containing the f(8,, 8,) factor is negligible
for almost any practical RF pulse, and will be dropped. The
sample spacing is A¢, so the length of the pulse is T = (N —
1)At. The half-amplitude width of the filter is approximately
the average of the stopband and passband widths

2F; + 2F,
B=——.
2At
If we define the fractional transition width as
_ F, — F,
F, + F;

the D, equation may be simplified to
D.(8,, 6,) = TBW. (20)

This is the key design equation. Using it, the slice width, tran-
sition width, pulse duration, and ripple amplitudes may all be
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Fig. 6. Digital filter parameters.

traded off analytically. This expression also allows the pulse
designer to exactly calculate the required inputs for the Park-
McClellan algorithm to produce an RF pulse with a specific
performance.

The function D, is an empirically derived performance mea-
sure for optimal FIR filters. For linear phase FIR filters it is
given by [19]

Do (81, &) = [a,L} + a1, + a3]L, + [asL] + a,L, + ag)
(21)

where L, = log,, 8,, L, = log,o 8,, and the a;’s are the coeffi-
cients

5.309 x 1073 a, = —2.66 x 1073

a,

a, = 7.114 X 1072 as = —5.941 x 107!

a; = —4.761 x 107" a5 = —4.278 X 107"

Fig. 7 is a plot of the linear-phase D, as a function of 6, for a
range of values for é,.

Minimum-phase FIR filters are easily designed using the
method described in [22], [23]. If a minimum-phase filter of
length N with ripple amplitudes 8, and &, is desired, the PM
algorithm is first used to design a linear-phase filter of length
2N — 1 with ripple amplitudes 26, and 83 /2. If the frequency
response of this linear-phase filter is biased up so as to be al-
ways positive, the result is the magnitude response squared of
a minimum-phase filter. The minimum-phase filter is then com-
puted by taking the square root to get the magnitude response,
and then computing the corresponding minimum-phase poly-
nomial as in (18). This filter will be of length N, and have ripple
amplitudes §; and §,.

This minimum-phase filter design method performs the same
operations as required in [6] to design B,(z) by factoring M,.
It provides a direct way to compute one such factorization. In
this case the method we use here of initially designing B,(z)
produces one of the same pulses that is obtained by initially
designing M, and factoring.

The same basic design relation of (20) still holds for mini-
mum-phase filters provided the correct expression for D, is
used. D, ,, for optimal minimum-phase equal-ripple filters is
given in terms of that for linear-phase filters by the expression

Dao (81 &) = 3Da (26, 5/2). (22)
For most filters we will be concerned with (ripples of a few
percent or less), the difference between D, ; and D, ,, is on the
order of 10-30%. This means that the minimum-phase filter can
have 2 10-30% narrower transition band, which is not a tre-
mendous difference. However, for the same transition width the
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Deoi(61,62)

Stopband Ripple, 62

Fig. 7. D, ; as a function of out-of-slice ripple. Each plot corresponds to
a different value of the in-slice ripple, starting at 0.001 for the top plot and
going to 1.0 for the bottom plot. Plots corresponding to 0.001, 0.01, 0.1,
and 1 are solid, 0.002, 0.02, and 0.2 are dashed, and 0.005, 0.05, and 0.5
are dot-dashed.

minimum-phase filter passband ripple can be smaller by a factor
of four or more. This is a significant difference.

The design relation given in (20) describes the B, (z) poly-
nomial. Unfortunately the relationship is generally nonlinear
between the parameters of the B, (z) polynomial and the rele-
vant feature of the slice profile. The nonlinearity is due to the
geometry of the relationship between the B, (z) polynomial and
the parameter of interest. Its effect is primarily in ripple ampli-
tudes. We define the effective ripple amplitudes 8¢ and &5 as the
ripple actually produced in the magnetization component of in-
terest relative to the maximum value of the profile. For exam-
ple, for a 7 /2 pulse 65 and 85 are the in-slice and out-of-slice
ripples in M,, relative to M,. The 8, and 8, specified in the PM
algorithm result in a slice profile with effective ripple ampli-
tudes &{ and 85. If the relationship between the specified poly-
nomial ripple and effective slice profile ripple is known, we can
calculate the ripple amplitudes to specify (8, and 6,) in order
to get the effective ripple amplitudes that we would like (& and
83). We will derive these relationships for five different types
of pulses: small-tip-angle and 7 /2 excitation pulses, inversion
pulses, crushed spin-echo pulses, and saturation pulses.

B. Small-Tip-Angle Pulses

The small-tip-angle case is the simplest. Here the initial mag-
netization lies along the z axis, and the parameter of interest is
the transverse magnetization. In the small-tip-angle regime the
RF pulse is proportional to the B, (z) polynomial, and the slice
profile is proportional to the Fourier transform of the pulse. No
compensation is required, so the specified and effective ripple
amplitudes are the same

B = &
8, = 8.

C. ©/2 Pulses

The next case is of 7 /2 selective excitation pulses. Here there
is considerable geometric distortion between the ripple as spec-
ified by the B,(z) polynomial and the ripple in the resulting

+3,sinn/4
(©) (d)

Fig. 8. Ripple geometry for 7 /2 pulse. The out-of-slice ripple geometry
is illustrated in (a) and (b). (a) is the half-angle or spin-domain geometry,
while (b) is the full-angle or magnetization space geometry. The in-slice
half-angle and full-angle ripple geometries are shown in (c) and (d).

slice profile. To calculate the effective &7 and 65 we will assume
that the B, (z) polynomial evaluated along the unit circle is

B,(e"9*") = sin ¢(x)/2

where ¢ (x) is the tip angle at a position x.
The out-of-slice ripple is in the small-tip-angle regime. From
Fig. 8(a) it can be seen that for z corresponding to a ripple peak

8, sin % = sin ¢(x)/2.

The sin( 7 /4) factor scales the polynomial to the proper in-slice
value for a 7 /2 pulse. The effective ripple is illustrated in Fig.
8(b), and can be calculated as

83 = sin ¢(x)
2 sin ¢(x)/2

n

= V25,

The polynomial ripple that corresponds to a given effective rip-
ple is then

5, = 8/V2.

In-slice the B,(z) polynomial is bounded by (1 + §,)
sin(w /4). At an in-slice ripple peak

B, (') = sin ¢(x)/2

]

(1+8,) sing sin ¢(x) /2.

This is illustrated in Fig. 8(c). From the figure we deduce
o(x) = w/2 + 26,.
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The effective ripple is the variation in M,, produced by the 24,
ripple in ¢ (x). The effective ripple 87, shown in Fig. 8(d), can
then be approximated as

&7 1 — cos 2§,
1-(1-128,))

I

R

= 25%.

Note that the ripple is no longer symmetric about the desired
value. The filter passband had a tolerance of +6, while the slice
profile has a tolerance of +0, —282. The polynomial ripple cor-
responding to a given effective ripple is

6, =« 7/2

D. Inversion Pulses

For inversion pulses the parameter of interest is M,. The ma-
jor change in the analysis for = pulses is that the B, (z) poly-
nomial is constrained to be less than one. The polynomial
produced by the PM algorithm has a value of 1 + 3, in the
passband. This is scaled so that the passband is bounded by (1
- 0,) +4,.

From (6) the inversion pulse slice profile is given by

M; = (ac* - BB*)M,.

Using the constraint that aa* + $8* = 1, this equation can be
reduced to a function of 8 only
M = (1 - 286%)M,. (23)

An out-of-slice ripple of §, in the B, (z) polynomial produces a
ripple

5 =28

in the out-of-slice M profile. The polynomial ripple corre-
sponding to a given effective ripple is then

8, = V55/2.

In-slice B, (z) goes from (1 — 26, ) to 1. The maximum in-slice
ripple occurs when B, (z) is a minimum

M =(1-201-25))M,
=(1-2+ 85 — 8H)M,

Il

—1 + 84,.
The effective ripple is then
87 = 85,
and the polynomial ripple for a given effective ripple is

5, = &/8.

E. Crushed Spin-Echo Pulses

The case of a spin-echo pulse surrounded by dephasing, or
crusher, gradients is of considerable practical interest. The
magnetization is initially in the transverse plane, and the param-
eter of interest is the resulting M, .

From (10) the transverse magnetization produced by a crushed
spin-echo RF pulse is

M,, = if*M,
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for an initial magnetization is along the +y axis. The effective
out-of-slice ripple is then

=8
which may be inverted to give
8, = Vo5

The B,(z) polynomial is scaled to be less than one, as it was
for inversion pulses. In-slice the polynomial is bounded by (1
— &8,) £ 6, so the effective ripple is

&=1-(1-25)
= 45,.

Solving for 8, as a function of &7,

8, = 8 /4.

F. Saturation Pulses

Saturation technically means the destruction of the sample’s
net magnetization. It is then no longer able to produce a signal
until the magnetization recovers. What we are actually referring
to here are 7 /2 excitation pulses followed by a large dephasing
gradient. This suppresses the signal produced by the magneti-
zation in a slice, but does not destroy it. For example, it can
still produce a stimulated echo. The term *‘suppression pulses’’
would be more accurate, but the term ‘‘saturation pulses’’ is
now well entrenched.

The important magnetization component for saturation pulses
is M,. After the saturation pulse all transverse magnetization is
assumed to be dephased. The saturated magnetization should be
left with no M, so that subsequent excitation pulses will produce
no signal. The unsaturated magnetization should be left with its
full M, so that when subsequently excited it will produce its full
signal.

The saturation pulse profile is given by the same expression
as for the inversion profile, given in (23)

M} = (1 — 286%)M,.

The difference is in the scale factor for the 8 polynomial, and
this changes the nature of the geometry. A saturation pulse is
basically a w /2 pulse, so that the 8 polynomial is the PM poly-
nomial scaled to sin /4 = 2/2.

Out-of-slice the polynomial ripple is +8,v2/2, so that the
out-of-slice M, ripple is

M} = (1 - 26B*)M,
= (1 - 2(8,v2/2)") M,

= (1 — )M,
The effective ripple is then
5 =8
which can be inverted to give
8, = V5.

In-slice the polynomial ripple is bounded by (1 + §,) V2/2,
so the in-slice M, is bounded by

M = (1 - 288%)M,
(1—(1£8))M
F26,M,.

1
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TABLE I
PARAMETER RELATIONS FOR Various RF PULSES
Case 8, 6,
Small-Tip 8 5
/2 V&2 8 /2
Inversion 5/8 Vo5 /2
Spin-Echo 5/4 V&5
Saturation 8/2 N3

The effective ripple is then

87 = 25,
so the polynomial ripple for a given effective ripple is
8 = 8j/2.

G. Summary

This section has been largely concerned with determining the
relationship between the ripple in B, (z) and the effective ripple
in the magnetic resonance parameter of interest. For conve-
nience the key results are summarized in Table I.

IV. DESIGN EXAMPLES

We next present several examples of how the results of the
previous section are used to design pulses. The design relations
first allow the pulse designer to trade off parameter values an-
alytically. Then when an acceptable set of parameters has been
selected, the relations tell exactly how to design the pulse that
meets the predicted performance.

A. Linear-Phase m /2 Pulses

The first example is the design of slice-selective /2 pulses.
These are a principal component of most imaging pulse se-
quences. This case will be examined in some detail both to il-
lustrate the design method, and to show the nature of the design
trade-offs.

Usually we would like the excited slice to be refocused by a
reversal of the slice select gradient. This can be assured by using
a linear-phase B, (z) polynomial. Most of the pulses we will
present in this section will be linear-phase, and hence refocus-
able. Refocusing is not always required, though. An example
is a field-of-view restriction pulse, like the slab-select pulse used
in 3-D imaging. The phase profile of the slab is resolved by the
imaging gradients. The phase is then suppressed by magnitude
detection. When refocusing is not required significant advan-
tages can be obtained by using a minimum-phase pulse. These
include improved slice profile and reduced flow artifacts. An
example of such a pulse is presented in the next section.

We would like to produce a 0.5 cm thick slice with a pulse
duration of 4.0 ms. If the gradient system can produce a max-
imum gradient strength of 1 G /cm, the bandwidth of the pulse
must be

B = yGAx
(4.26 kHz /G)(1 G/cm)(0.5 cm)
= 2.13 kHz.

I

The time-bandwidth product is then

TB = (4 ms) (2.13 kHz)
= 8.52.

For convenience we will assume that the time-bandwidth prod-
uct we are designing to is 8. The resulting pulses will produce
0.47 cm slices at full gradient amplitude, or will produce 0.5
cm slices at a gradient amplitude of 0.94 G /cm.

The remaining design parameters are the in-slice and out-of-
slice ripple amplitudes, and the width of the transition band.
Choosing any two of these determines the third. Here we choose
the two ripple amplitudes and then solve for the required frac-
tional transition width using (20). We could just as well choose
the transition width and use (20) to solve for D.,, and then pick
two ripple amplitudes that will produce that D,,.

We also have to decide how many samples to use for the RF
pulse. Fewer samples result in faster execution of the pulse al-
gorithm. It also produces larger tip angles for each sample in
the RF pulse, and this can result in the hard-pulse approxima-
tion being violated. The number of points only has to be suffi-
cient so that the slice-profile ripples are greater than the errors
introduced by the hard-pulse approximation. Higher quality slice
profiles require finer sampling. The effect of inadequate sam-
pling is usually most noticable as nonequal out-of-slice ripple.
For the examples presented in this section 65 samples are used
for the RF waveform, which results in a maximum tip angle of
12° per sample for pulses with a time-bandwidth product of 8.

The other consideration for choosing the number of samples
is that the sampling of the RF waveform will also excite side-
lobes at multiples of the RF sampling frequency. The location
and shape of these sidelobes can be calculated by a Fourier
analysis since the sidelobe tip angles will be small. These side-
lobes may be pushed further out either by interpolating the RF
waveform as in [6], or by interpolating the B,(z) polynomial
before the inverse SLR transform. The latter approach has the
added benefit of reducing the errors in the hard-pulse approxi-
mation, resulting in more accurate RF pulses. Increasing the
filter order used for B,(z) is effectively just an interpolation
method.

Solving (20) for the fractional transition width

W= D
T 1B
As a first example let the in-slice ripple and the out-of-slice
ripple both be 1%. Using the expressions from Table I the re-
quired polynomial ripples are 6, = 7.1% and 8, = 0.71%.
These values are then substituted into the linear-phase D,
expression (21) to give

D, = 1.44.
The fractional transition width is then

L

The PM algorithm requires the location of the edges of the stop
and passbands relative to the sampling frequency. If the RF
pulse has 65 samples over 4 ms, the sampling frequency is 16
kHz. The slice is 2 kHz in width, so it extends from +1 kHz.
The transition band is

BW = (2 kHz)(0.18) = 0.36 kHz.
This puts the passband edge at (1 — 0.36/2) = 0.82 kHz and

the stopband edge at (1 + 0.36/2) = 1.18 kHz. Normalizing
by the sampling frequency

F, = 0.82/16 = 0.05125

P

F, = 1.18/16 = 0.07375.
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Fig. 9. The performance of the 1% ripple /2 pulse. Plot (a) shows | M|,
while (b) is the same plot on a log scale. This shows that the out-of-slice
ripple is close to the design value of 1%. Plot (c) is of 1 — logyo M, |
which shows the in-slice ripple. It is also close to its 1% design value. Plot
(d) shows that the transition band is approximately the specified 360 Hz,
and that the half amplitude point falls close to the intended 1 kHz.

The only remaining input for the PM algorithm is the weighting
of the in-slice and out-of-slice ripples. The in-slice ripple should
be weighted by 1/8, and the out-of-slice ripple by 1/8,.

The RF pulse that results from these specifications is that
plotted previously in Fig. 4. The performance of this RF pulse
is shown in Fig. 9. Fig. 9(a) is the absolute value of the slice
profile. Fig. 9(b) is the same plot on a log scale. The out-of-
slice ripple is close to the design value of 1%. Fig. 9(c) is a
plot of 1 — log,o | M,,|. This shows that the in-slice ripple is
also close to its design value of 1%, although again it is ex-
ceeded slightly. Fig. 9(d) shows that the transition width is ap-
proximately the desired value of 360 Hz, and that the half
amplitude point falls close to the intended 1 kHz. The transition
width can be increased slightly if it is critical to achieve the
specified ripple amplitudes exactly.

Figs. 10 and 11 compare this SLR pulse to a Hamming win-
dowed sinc pulse, such as is commonly used on commercial
imaging systems. Although the RF pulses are similar in char-
acter there are several differences in the slice profiles. The SLR
pulse has uniform ripple both in-slice and out-of-slice. The
Hamming windowed sinc has very little ripple in-slice, and only
one significant sidelobe out-of-slice. The amplitude of this side-
lobe is about 5% . The transition width of the windowed sinc is
50% wider than that of the SLR pulse. The SLR pulse would
be preferable in cases where adjacent slices are being excited,
such as multislice imaging. Both the absence of the sidelobe
and the sharper profile reduce crosstalk between slices.

In the previous example we simply chose the in-slice and out-
of-slice ripple to be 1%. This determined the transition width.
An important design trade-off is the relationship between the
ripple amplitudes and the transition width. A large reduction in
ripple amplitude can be obtained with a relatively small in-
crease in transition width. Fig. 12 is a plot of two SLR pulses
designed with 5% and 0.2% in-slice and out-of-slice ripple am-
plitudes. Fig. 13 is a plot of the slice profiles produced by these
pulses. The ripple amplitude has been reduced by a factor of 25
at a cost of a factor of 2.5 in transition width. This overstates
the difference in transition widths. If the same 5% ripple criteria
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Fig. 10. Comparison of the SLR 1% ripple pulse (solid line) to a Ham-
ming windowed sinc pulse (dashed line).
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Fig. 11. Slice profiles produced by the SLR 1% ripple pulse (solid line)
and the Hamming windowed sinc pulse (dashed line).
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Fig. 12. SLR pulses with ripple amplitudes of 5% (solid line) and 0.2%
(dashed line).

are used to measure both transition widths, the increase is less
than a factor of 2. A very large reduction in ripple is obtained
with a moderate reduction in slice sharpness.

B. Minimum-Phase = /2 Pulses

Linear-phase pulses are not always required or desirable. One
example is a field-of-view restriction pulse. Here the slice will



PAULY et al.: SHINNAR-LE ROUX SELECTIVE EXCITATION PULSE DESIGN ALGORITHM 63

09+ 1
os| 1
07} ‘ ‘
0sf

0.5r

Amplitude

04}

03 4

02f

0.1

4 3 2 -1 0 1 2 3 4
Frequency, kHz

Fig. 13. Slice profiles produced by the 5% ripple (solid line) and 0.2%
ripple (dashed line) SLR pulses.
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Fig. 14. Minimum-phase = /2 pulse.

be resolved by the imaging gradients, so the phase across the
slice is unimportant provided it is small across a voxel. Nishi-
mura et al. showed that an off-center RF pulse produces signif-
icantly less flow dephasing than a linear-phase pulse, with only
a minor penalty in slice profile [24]. A minimum-phase pulse
obtains a similar reduction in flow dephasing along with an im-
provement in slice profile.

The minimum-phase pulse requires a maximum-phase filter
because the filter phase is relative to its first sample, while the
phase produced by the pulse is relative to its last sample. The
maximum-phase filter is simply the minimum-phase filter re-
versed.

The minimum-phase pulse will have essentially the same in-
tegrated RF power as the corresponding linear-phase pulse. Both
have similar | B, (z) | profiles as evaluated along the unit circle,
50 both will have essentially the same 4,,(z) polynomials. From
(19), both pulses will have the same integrated RF power.

The higher performance of the minimum-phase filters can be
used to improve any combination of the slice-profile parame-
ters. If we again specify in-slice and out-of-slice ripple ampli-
tudes at 1% the minimum-phase D., ,, may be calculated from
(22) to be 1.26. This is smaller than the 1.44 for the linear-
phase pulse. The reduction in D,, can be used to reduce any
term in the product TBW. For example, the transition width W
can be reduced by 15% to 300 Hz. This is 60 Hz less than for
the linear-phase pulse. The RF waveform and the simulated slice
profile are plotted in Figs. 14 and 15. The slice profile is shown

Amplitude

-0.8f 1

Frequency, kHz

Fig. 15. Refocused minimum-phase slice profile. The refocusing gradient
lobe is 0.16 times the slice-select gradient area.

refocused by a gradient area of only 0.16 times the slice select
gradient area. In comparison a linear-phase pulse requires a re-
focusing gradient area of 0.5 times the slice select gradient area.

Rather than reducing one of the terms in the TBW product,
we could also choose smaller ripple amplitudes so that D, ,, is
the same as D, , for the 1% ripple linear-phase pulse. Two
possibilities are reducing the out-of-slice ripple by a factor of
two, or reducing the in-slice ripple by a factor of five.

C. =« Inversion and Spin-Echo Pulses

The same basic design method can be used to design inver-
sion and spin-echo pulses. The only difference is which expres-
sion from Table I is used to compute the polynomial ripple
required to produce the desired effective ripple. The computed
polynomial ripple is then used to compute D.,.

The example presented in this section has the same band-
width and duration as the « /2 pulse of the previous section, 2
kHz and 4 ms, respectively. The time-bandwidth product is
again 8. The design is of an inversion pulse with 1% ripple
in-slice and out-of-slice. Since we do not care about phase for
an inversion pulse we can use either a linear-phase or minimum-
phase pulse. '

For the linear-phase case the corresponding D, , is 2. The
fractional transition width is 2 /8 = 0.25, for a transition width
of 500 Hz. The transition band then extends from 750 Hz to
1.25 kHz. The number of points used in the design is 128 to
ensure that the hard-pulse approximation is satisfied. The re-
sulting pulse and its slice profile are shown as the solid lines in
Figs. 16 and 17. The slice profile actually has slightly less rip-
ple than specified. The in-slice and out-of-slice ripple are both
about 0.8%.

Note that the pulse has two large values at either end of the
pulse. These are due to the fact that a significant out-of-slice
ripple in the spectrum of the pulse produces very little out-of-
slice ripple in the M, component. This ripple allows a narrower
transition width to be obtained. These are known in our group
as “‘Conolly wings’’ because they appeared frequently in Con-
olly’s optimized inversion pulses [15].

For the minimum-phase case the D, ,, is 1.36, which is sig-
nificantly less than for the linear-phase pulse. The transition
width is then reduced to 340 Hz. The minimum-phase pulse and
its slice profile are plotted as the dashed lines in Figs. 16 and
17. The ripple amplitudes are almost exactly the designed 1%
values.
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Fig. 16. SLR inversion pulses designed to have a 1% ripple both in-slice

and out-of-slice. The solid line is a linear-phase pulse, and the dashed line
is a minimum-phase pulse.
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Fig. 17. M, produced by the 1% ripple SLR inversion pulses of Fig. 16.
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Fig. 18. Spin-echo profile produced by the linear-phase pulse of Fig. 16
used without surrounding crusher gradients.

The linear-phase pulse can also be used as a spin-echo pulse.
The spin-echo slice profile produced by this pulse without sur-
rounding crusher gradients is plotted in Fig. 18. The slice pro-
file with surrounding crusher gradients is plotted in Fig. 19. In
both cases the phase across the slice is very flat. The ripple is
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Fig. 19. Spin-echo profile produced by the linear-phase pulse of Fig. 16
used with crusher gradients.

less than for the inversion profile, as would be expected from a
comparison of the entries in Table L.

In [6] it is noted that an inversion pulse can have half the
transition width of a spin-echo pulse of the same duration. Here
this is reflected in the difference between D, , for the refocusing
pulse and D.. , for the minimum-phase pulse. This difference
depends on the number of passband zeros in the B,(z) poly-
nomial [22]. For a very narrow slice with no passband zeros (a
single lobe RF pulse) the minimum-phase and linear-phase
pulses are identical. For a wide passband with many passband
zeros the 2 to 1 ratio noted in [6] can be approached. For the
examples shown in this section the minimum-phase inversion
pulse has a transition width that is 340/500 = 0.68 times that
of the linear-phase pulse.

The design of 7 pulses is probably the most important appli-
cation of the SLR algorithm. Fourier methods fail badly in the
design of pulses with tip angles of this size. Optimization meth-
ods are capable of designing good = pulses, but require consid-
erably more time and computation. The SLR algorithm makes
the design of « pulses quick, and it analytically predicts the
attainable slice profile.

D. Saturation Pulses

An ideal saturation pulse would leave no M, magnetization
for the saturated spins. In practice the effectiveness of a satu-
ration pulse is determined primarily by the RF uniformity across
the subject. On our 1.5T GE Signa System the subject induced
variation is on the order of 10%. The saturation pulse in-slice
ripple should be somewhat less than this so that RF uniformity
is the performance limiting factor. The out-of-slice ripple can
easily be made quite small due to the square dependence of the
M, ripple on the polynomial ripple.

As an example we again consider a 4 ms, 2 kHz bandwidth
pulse. Since the slice will not be refocused we do not need a
linear-phase pulse. The excited magnetization will be sup-
pressed by a subsequent dephasing gradient anyway, so it is
advantageous for the excitation pulse to leave the slice with as
much phase as possible. This is accomplished by using a max-
imum-phase pulse, which is based on a minimum-phase B, (2).

If we specify the in-slice ripple as 1% and the out-of-slice
ripple as 0.1%, we calculate D, to be about 1.36. This gives a
fractional transition width of 0.17, or a transition width of 340
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Fig. 20. Maximum-phase saturation pulse.
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Fig. 21. Log-magnitude slice profile for the saturation pulse of Fig. 20.

Hz. The resulting pulse is shown in Fig. 20, and a log plot of
the slice profile is shown in Fig. 21.

V. CONCLUSION

This paper has outlined the Shinnar-Le Roux algorithm for
the design of RF pulses. Beyond its inherent speed, perhaps its
most useful feature is that slice profiles can be predicted ana-
lytically. Slice profile parameters can be traded off before ever
designing a pulse. This allows RF pulse design to be fully in-
tegrated into pulse sequence design. A number of pulse designs
were presented. These included the usual 7 /2 and 7 pulses used
in most MR scanners, as well as a saturation pulse, and mini-
mum-phase and maximum-phase pulses.
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