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Abstract
The multi-echo spin-echo sequence is a series of operators, referred to as periodic

operators. Each periodic operator consists of a free rotation (no RF), a refocusing

RF pulse, and another free rotation, identical to the first one. A preparation opera-

tor that precedes the periodic operators converts the equilibrium magnetization Mz

into an initial magnetization Mi. It is shown that a multi-echo sequence is equiva-

lent to a simple rotation of the magnetization about a tilted axis. The component

of Mi along the rotation axis is stationary and provides a stable signal, denoted

pseudo steady-state. The perpendicular component rotates and eventually de-

phases. Using this model, we derive analytic expressions to the signal for differ-

ent preparation operators, and show how to align Mi with the rotation axis such

that the signal is maximized. A simple and efficient algorithm is presented to cal-

culate the Fourier coefficients of the magnetization during the sequence using the

discrete Fourier transform. Finally, formulas of the echo signal when unavoidable

phase errors are generated are derived. We show how to eliminate artifacts caused

by these errors and restore the original image.
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1 | INTRODUCTION

In this work, we shall analyze the multi-echo spin-echo
sequence as shown in Figure 1. It is known in imaging as
RARE,1 Fast Spin Echo (FSE), or Turbo Spin Echo (TSE). It
consists of a set of N periodic operators Rp, preceded by an
initial magnetization Mi which is generated by a preparation
operator Rprep from the equilibrium magnetization Mz. Each
periodic operator consists of a rotation around the z-axis by
/ radians, an RF pulse with flip angle h, and another rotation
around the z-axis by / radians. The flip angles h can vary
from one periodic operator to another. An echo signal is
acquired between 2 adjacent periodic operators. In NMR
imaging, the phase / is generated by gradients, but our anal-
ysis also hold for position-independent /. The multi-spin-
echo sequence was analyzed extensively in the literature
using the Extended Phase Graph (EPG) algorithm.2-9 Le
Roux and Hinks10 used a similar algorithm to calculate echo

amplitudes, and devised an algorithm to stabilize the echoes
at the beginning of the echo train.

It is well known7,8 that the magnetization M(/)(n) after n
periodic operators is a finite linear combination of exp(ik/),
where k is an integer (see Equation (14)). The coefficients of
this linear combination are called “Fourier coefficients”
because they are calculated using the discrete Fourier trans-
form of M(/)(n) as shown in Equation (16) below. The EPG
algorithm tracks individual Fourier coefficients during the
evolution of the magnetization along the echo train. In this
work, we use a different approach and analyze the multi-
echo sequence as a stack of periodic operators. This
approach provides new insights, and complements the EPG
analysis. To improve clarity and simplify the analysis, we
use a vector model to describe the evolution of the magneti-
zation. In some cases (eg, Equations (27), (32) and (D6)),
the solution is given in terms of a simple numerical integral,
rather than a complicated analytic expression.
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In the first section, we show that the multi-echo
sequence is equivalent to a simple rotation about a tilted
axis. Consequently, the component of Mi which is aligned
with the rotation axis remains unchanged, giving rise to a
pseudo steady-state (PSS) signal.5 The component of Mi

which is perpendicular to the rotation axis rotates and
eventually de-phases. Due to its simplicity, the evolution
along the echo train (neglecting relaxation) can be calcu-
lated analytically, and analytic expressions for some Four-
ier coefficients of the magnetization are provided. Based
on this analysis, an efficient algorithm using the discrete
Fourier transform is presented to compute the Fourier coef-
ficients of the magnetization. In the next section, we calcu-
late the PSS and echo signal for some given initial
magnetization Mi. Then, we show how to design Rprep

such that Mi is aligned with the rotation axis and the signal
for a given flip angle h is maximized. In the last section,
this vector model is used to provide closed form formulas
for the signal in case of a phase error between the excita-
tion pulse of Rprep and the first periodic operator, ie, when
the Carr-Purcell Meiboom-Gill (CPMG) condition11,12 is
violated. A method to correct this error is provided.

Alsop13 also presented an analysis of the multi-echo
sequence and derived the PSS signal S = sin(h/2) in Equa-
tion (19b) below (see (4), (5) and (6) in reference.13) Lukzen
et al14 derived analytic approximations to the pseudo steady-
state signal and echo amplitudes without relaxation and later
extended it and included relaxation and off-resonance.15 The
drawbacks of these derivations are: (i) the equations are diffi-
cult to evaluate because series expansions and integral evalu-
ations are required; (ii) the approximate expressions for echo
amplitudes without relaxation (reference (14) equation (27)
and reference (15) equation (36)) converge to the exact solu-
tion (Equation (20)) after 8-10 echoes where the transient
term I(n) in Equation (20) is already close to zero.

2 | THEORY

The multi-echo pulse sequence is shown in Figure 1 with
N periodic operators preceded by the preparation operator
Rprep. Without loss of generality, all RF pulses are in the
x-axis. If relaxation is ignored, the periodic operator is a
sequence of pure rotations. If an operator R is a rotation or

a set of rotations of the magnetization vector, the axis and
angle of rotation fully characterize R, because the magni-
tude of the vector is preserved. Since only 2 parameters are
needed to characterize R, it can be described by a 2 9 2
unitary matrix

R ¼ a �b�

b a�

� �

where a and b are called the Cayley-Klein parameters
(equations (1) and (2) in reference (16)). We prefer this
notation over 3 9 3 rotation matrices because it simplifies
the calculations. If a and b are known, one can calculate
the equivalent 3 9 3 rotation matrix using the matrix
located between equations (4) and (5) in reference.16 If the
initial magnetization is Mz, the final magnetization is given
by equations (5) and (6) in reference.16 The Cayley-Klein
parameters a and b of a rotation R are calculated from the
rotation axis and the rotation angle around this axis using
equations (1) and (2) in reference.16

a ¼ cos
w
2

� �
þ inz � sin w

2

� �
(1a)

b ¼ i nx þ iny
� � � sin w

2

� �
(1b)

nx, ny, and nz are the x, y, and z components of a unit vec-
tor along the rotation axis and w is the rotation angle
around this axis. We define positive w a clockwise rotation
because proton spins rotate in the clockwise direction.16

From Equation (1), the rotation matrix RP of the peri-
odic operator, with a rotation of / around z (nz = 1,
nx = ny = 0) and an RF flip angle h around x (nx = 1,
ny = nz = 0), is given by

RP ¼
exp i/

2

� �
0

0 exp � i/
2

� �
0
B@

1
CA C iS

iS C

� �

exp i/
2

� �
0

0 exp � i/
2

� �
0
B@

1
CA ¼ Cz iS

iS Cz�1

� � (2a)

where C ¼ cos h
2

� �
; S ¼ sin h

2

� �
and z ¼ expði/Þ. The

Cayley-Klein parameters of RP in (2a) are

FIGURE 1 The multi-echo pulse
sequence: N periodic operators are preceded
by a prep operator Rprep that converts Mz

to Mi
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aP ¼ Cz; bP ¼ iS: (2b)

The rotation operator Rn after n periodic operators Rp

is

Rn ¼ RP
n ¼ Cz iS

iS Cz�1

� �n

: (3)

The final a and b are

a
b

� �
¼ Rn � Rprep � 1

0

� �
(4)

where Rprep is the 2 9 2 matrix of the preparation operator
(Figure 1). The vector [1, 0]T in Equation (4) is the initial
a and b, where M is the initial thermal equilibrium magne-
tization Mz. It is obtained by setting w = 0 in Equation (1).
The transverse and longitudinal magnetizations after n peri-
odic operators are given by Equations (5) and (6) in refer-
ence16:

MðnÞ
xy ¼ Mx þ iMy ¼ 2a�b; MðnÞ

z ¼ aa� � bb�: (5)

The rotation axis and rotation angle of RP are determined
from Equation (2) using Equation (1). The rotation axis, a
unit vector with components nx, ny, and nz, is given by

nz
nx

¼ imagðaPÞ
imagðbPÞ

¼ C � sinð/Þ
S

(6a)

ny ¼ �realðbPÞ
sinðw2Þ

¼ 0 (6b)

imag() and real() are the imaginary and real part, respec-
tively.

Using (6), the rotation axis of RP is a unit vector
aligned with the 3-components vector VA

VA ¼ ½1; 0; k�T where k � C � sinð/Þ
S

: (7)

The rotation angle w in the clockwise direction around
VA is

cos
w
2

� �
¼ realðaPÞ ¼ Ccosð/Þ;

sin
w
2

� �
¼ S

nx
¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
:

(8)

From (8)

exp i
w
2

� �
¼ cos

w
2

� �
þ isin

w
2

� �
¼ Ccos /ð Þ þ iS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
:

(9a)

From (9a)

expðinwÞ ¼ exp i
w
2

� �	 
2n
¼ Ccosð/Þ þ iS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

ph i2n
:

(9b)

The rotation angle w is:

w ¼ 2 � angle Ccos/; S
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p� �
(9c)

where “angle” in (9c) is the phase angle of a complex
number Z in the [�p, p] range defined as

phase angle of Z � angle realðZÞ; imagðZÞð Þ:

2.1 | Vector model

We shall now calculate the magnetization
MðnÞ ¼ Mx;My;Mz

� �T after n periodic operators and a
given initial magnetization Mi. This is done in 3 steps: (i)
write Mi as a vector sum of 2 vectors: MA along VA and a
vector MP perpendicular to VA; (ii) during the application
of Rn, MA does not change while MP rotates by nw radi-
ans in a plane perpendicular to VA; (iii) add MA to the
rotated MP to obtain the final magnetization M(n). This is
demonstrated in Figure 2. MP and MA fulfill 3 conditions:

FIGURE 2 Mi is decomposed to 2 perpendicular vectors MP

and MA, where MA is collinear with the rotation axis VA in
Equation (7). MA is in the XZ plane at an angle Θ = angle (1, k)
with the x-axis and d1 = 90° � angle(1, k) with the z-axis. n periodic
operators rotate MP by nΨ radians in a plane perpendicular to MA.
The final magnetization M(n) is a vector sum of MðnÞ

P (the rotated
MP), and MA
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(i) MP • MA = 0; (ii) MP + MA = Mi; (iii) MA is collinear
with VA. The symbol • is the scalar product of 2 vectors
and Mi ¼ Mix;Miy;Miz

� �T . If Mi is known, MP and MA

that fulfill these conditions are determined uniquely:

MA ¼ ½1; 0; k�T � A; MP ¼ ½�k; 0; 1�T � Bþ ½0;Miy; 0�T
(10)

where A ¼ Mix þ kMiz

1þ k2
and B ¼ Miz � kMix

1þ k2
:

MA in (10) depends on Mi and the flip angle h through the
parameter k. The pseudo steady-state (PSS) magnetization
MA (collinear with VA) is the projection of Mi on the rota-
tion axis direction VA. Therefore, if Mi is collinear with
VA, MA is maximal. On the other hand, if Mi is perpendic-
ular to VA, the pseudo steady-state magnetization MA is
zero.

The magnetization M(n) after n periodic operators is cal-
culated in Appendix A. The 3 9 3 rotation matrix R(n)

after n periodic operators is given by Equation (A2), and
the total magnetization M(n) by Equation (A5). This simpli-
fies the calculation of M(n) to an evaluation of a 3 9 3
matrix. (A2) holds only if the flip angle h is the same for
all RF pulses and relaxation is neglected.

Our goal is to maximize MA and minimize (or even
zero) MP. This occurs if Rprep tilts Mz to the direction of
VA for all /, such that MP = 0. From Equation (10)

MP ¼ 0 ) Miz ¼ kMix and Miy ¼ 0: (11a)

If TR > T1, M2
ix þM2

iz ¼ M0 ¼ 1. Using (11a):

Mix ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ; MAmax ¼ ½1; 0; k�Tffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p (11b)

MAmax is the maximum pseudo steady-state magnetization
for a given / and h. If MP 6¼ 0, then |MA| < |MAmax|.
Define

RMA � j MA j
j MAmax j ¼ j A j �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p
¼ j Mix þ kMiz jffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2
p

(11c)

where 0 ≤ RMA ≤ 1. RMA = 1 indicates maximal MA and
zero MP. Therefore, an optimal Rprep generates Mi with
the largest possible RMA. Below we shall optimize Rprep

by maximizing RMA. Equation (11) was originally derived
by Alsop (equation (6) in reference (13)).

2.2 | Relaxation

In a real experiment, T1 and T2 relaxation cannot be
neglected, so the periodic operator can no longer be

represented by pure rotations. The nth periodic operator
in a pulse sequence with N RF pulses operates on the
(n�1) magnetization vector M(n-1) to yield the nth mag-
netization vector M(n). This is a product of 3 operators:
(i) a rotation by / around z plus T1 and T2 relaxation;
(ii) an RF pulse of flip angle h around x; (iii) another
rotation by / around z with T1 and T2 relaxation. The

magnetization vector is M ¼ Mxy M�
xy Mz

h iT
where

Mxy ¼ Mx þ iMy and M�
xy ¼ Mx � iMy. Starting from

M(n-1), the magnetization M1 after the first rotation by /
and relaxation is

M1

0
B@

1
CA ¼

E2exp �i/ð Þ 0 0

0 E2exp i/ð Þ 0

0 0 E1

0
B@

1
CA M n�1ð Þ

0
B@

1
CA

þ
0

0

1� E1

0
B@

1
CA:

(12a)

Where E1= exp(�s/T1), E2 = exp(�s/T2). s is half the
time between adjacent RF pulses. The RF operator is a
rotation by the flip angle h around x16:

RF ¼
ða�Þ2 �b2 2a�b
�ðb�Þ2 a2 2ab�

�a�b� �ab a�a� b�b

0
@

1
A: (12b)

a and b are the Cayley-Klein parameters of a rotation
around x (Equation (1)), a ¼ cos h

2

� �
and b ¼ isin h

2

� �
. To

obtain M(n), M1 in (12a) is rotated by the RF operator in
(12b) and then by the third operator, which is identical to
the rotation and relaxation matrix in (12a):

M nð Þ

0
B@

1
CA ¼

E2exp �i/ð Þ 0 0

0 E2exp i/ð Þ 0

0 0 E1

0
B@

1
CA

RF

0
BBBBBBB@

1
CCCCCCCA

M1

0
B@

1
CAþ

0

0

1� E1

0
B@

1
CA:

(12c)

We consolidate the operators in (12a) and (12c) and
relate M(n-1) to M(n) in a single Equation:

MðnÞ
xy ð/Þ ¼ E2

2e
�2i/ða�Þ2 �Mðn�1Þ

xy � E2
2b

2 �M�ðn�1Þ
xy

þ2E1E2e�i/a�b �Mðn�1Þ
z þ 2ð1� E1ÞE2e�i/a�b

(13a)
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MðnÞ
z ð/Þ ¼ �E1E2e�i/a�b� �Mðn�1Þ

xy � E1E2ei/ab �M�ðn�1Þ
xy

þE2
1ða�a� b�bÞ �Mðn�1Þ

z

þð1� E1ÞE1ða�a� b�bÞ þ 1� E1:

(13b)

2.3 | Fourier representation

From (5), (13) and the EPG analysis,3,5,7 it can be shown
that M(n) in sequence with N periodic operators can be
written as a power series in z = exp (i/) with powers from
�2N to 2N:

MðnÞ
xy ð/Þ ¼

X2N
k¼�2N

AðnÞ
k � zk; MðnÞ

z ð/Þ ¼
X2N

k¼�2N

BðnÞ
k � zk

(14)

Ak and Bk are / independent complex numbers, called
the Fourier coefficients of M(n). If Mn

xyð/Þ and MðnÞ
z ð/Þ are

known analytically (see below), Ak and Bk can be calcu-
lated by integration (reference (17) section 7.7):

AðnÞ
k ¼ 1

2p

Z p

�p
MðnÞ

xy ð/Þ e�i/k d/;

BðnÞ
k ¼ 1

2p

Z p

�p
MðnÞ

z ð/Þ e�i/k d/:
(15a)

When / is generated by a gradient, all zk with k 6¼ 0 in
(14) de-phase and disappear, and MðnÞ

xy ¼ AðnÞ
0 and

MðnÞ
z ¼ BðnÞ

0 . From (15a), the nth sampled signal MðnÞ
xy

referred to as the nth echo Echo(n) is

Echo ðnÞ ¼ MðnÞ
xy ¼ AðnÞ

0 ¼ 1
2p

Z p

�p
MðnÞ

xy ð/Þ d/: (15b)

In Appendix B, we show that Equation (15) can be sim-
plified for pi-symmetric (pi-antisymmetric) functions and
that only the pi-symmetric part of MðnÞ

xy contributes to the
echo A0.

The drawback of Equation (15) is that a continuous M
(/) is required to evaluate the integrals accurately. Alterna-
tively, the 4N + 1 coefficients Ak and Bk in Equation (14)
can be computed by calculating MðnÞ

xy ð/Þ and MðnÞ
z ð/Þ in

Equation (5) (no relaxation) or (13) (with relaxation) at dis-
crete 4N + 1 angles /j from 0 to 2p. Substitution of these
MðnÞ

xy ð/jÞ and MðnÞ
z ð/jÞ in (14) is equivalent to solving a

system with 4N + 1 unknowns (Ak and Bk) with 4N + 1
Equations. The solution AðnÞ

k and BðnÞ
k is very stable and

simple (reference (18) section 8.1, reference (19) section
10.3) when /j is set to 4N + 1 equally spaced angles /j

from 0 to 2p, ie, /j ¼ 2pj
4Nþ1 where j = 0 to 4N, and is given

by

AðnÞ
k ¼ 1

4N þ 1

X4N
j¼0

MðnÞ
xy ð/jÞ � exp½�i/jk�

¼ 1
4N þ 1

DFT MðnÞ
xy ð/j

� � (16a)

BðnÞ
k ¼ 1

4N þ 1

X4N
j¼0

MðnÞ
z ð/jÞ � exp½�i/jk�

¼ 1
4N þ 1

DFT MðnÞ
z ð/jÞ

� � (16b)

where DFT is the Discrete Fourier Transform with 4N + 1
points. A MATLAB implementation of this algorithm to cal-
culate Ak

(n) and Bk
(n) (with relaxation) for all k and all n

between 1 and N is shown in Appendix C. This simple and
efficient algorithm is about 3 times faster (measured with the
MATLAB internal timer) than the EPG algorithm.5,7

Usually, we are only interested in the echo A0. In this
case, MðnÞ

xy ð/Þ and MðnÞ
z ð/Þ needs to be calculated only for

2N + 1 equally spaced angles, ie, /j ¼ 2pj
2Nþ1 with j = 0 to

2N. There are not enough Equations (only 2N + 1) to solve
all Ak and Bk. As shown in reference (18) section 3.2, the
DFT operator in (16a) with 2N + 1 points provides linear
combinations of Ak terms for k 6¼ 0 (aliasing), whereas A0

for k = 0 remains intact. Similarly, (16b) with 2N + 1
points provides linear combinations of Bk terms for k 6¼ 0,
and B0 remains intact. Therefore, A0 and B0 are calculated
by a DFT with 2N + 1 points and k = 0:

AðnÞ
0 ¼ 1

2N þ 1

X2N
j¼0

MðnÞ
xy ð/jÞ ¼ mean MðnÞ

xy

� �
;

BðnÞ
0 ¼ 1

2N þ 1

X2N
j¼0

MðnÞ
z ð/jÞ ¼ mean MðnÞ

z

� � (16c)

where mean() in (16c) is the average of all 2N + 1 values
of Mxy (/j) and Mz (/j).

The analysis above assumes non-selective hard RF
pulses and ignores off-resonance effects. This analysis and
the computer program in Appendix C can be extended to
slice-selective soft pulses, by calculating the b1 waveforms
of all the RF pulses, and dividing each waveform into
piece-wise constant segments as in Figure 1 in reference.16

Off-resonance effects are calculated by defining an off-
resonance vector ℑ that extends in and beyond the band-
width of the pulses. The magnetization MP in Appendix C
after the soft excitation 90° pulse vs ℑ is calculated as
explained in Figures 4 and 5 in reference.16 The a and b
parameters of the RF pulses vs ℑ are calculated from the
b1 waveform with Equations (1-4) and Figure 1 in refer-
ence.16 These a, b become 2-dimensional matrices that
depend on off-resonance ℑ and the RF pulse number n,
rather than vectors with N components. They are used
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exactly as in Appendix C to calculate the signal amplitude
vs ℑ (slice profile). The overall echo amplitude is the sum
of the signal over all the excited off-resonance values ℑ.

3 | IMPLEMENTATION FOR
SEQUENCES WITH A GIVEN MI

In this section, we apply the vector model from the previ-
ous section and calculate the magnetization and echo for
sequences with a given initial magnetization Mi and N
periodic operators. We neglect relaxation and assume a

constant flip angle, so the analytic solution of
Appendix A can be used to find M(n) and echo signal for
n = 1 to N.

FIGURE 3 Comparison between the pseudo steady-state (PSS)
signal vs flip angle h (neglecting relaxation) for (i) Equation (19b)
where Mi is along x, (ii) Equation (24b) with h1=h/2 + 90°, and (iii)
Equation (27) with MA = MAmax

FIGURE 4 Optimized flip angles h1 to hL vs h, the flip angle of the
train. h1-hL for each given h are marked by crosses at the intersections
with the vertical h line. Note the increase of L when h decreases

FIGURE 5 Comparison between Mx (/) and Mz (/) after the
first L pulses with flip angles from Figure 4, with the theoretical
MAmax in (11b) vs /. The calculated Mx and Mz are plotted as blue
and magenta circles, respectively. The theoretical Mx and Mz from
(11b) are plotted as full red and full green lines, respectively. The flip
angles h used are 25° (top Figure) and 90° (bottom Figure)
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As shown in (A5), M(n) consists of a pseudo steady-
state term MA and an oscillatory term MðnÞ

P . Since only
MA gives a useful signal, it is useful to calculate the Four-
ier coefficients of MA using (15) and (16):

A nð Þ
k ¼ 1

2p

Z p

�p
M nð Þ

A;xy /ð Þ e�i/k d/;

B nð Þ
k ¼ 1

2p

Z p

�p
M nð Þ

A;z /ð Þ e�i/k d/
(17a)

where MðnÞ
A;xy and MðnÞ

A;z in (17a) are the x-y and z
magnetization of MA after the nth RF pulse. Since the echo
signal is the zero Fourier coefficient AðnÞ

0 of M(n) (Equa-
tion (15b)) and MðnÞ ¼ MA þMðnÞ

P (Equation (A5)):

Echo nð Þ ¼ 1
2p

Z p

�p
M nð Þ

xy /ð Þ d/ ¼ A nð Þ
0 þ

1
2p

Z p

�p
MðnÞ

P;xy /ð Þ d/ � A0 þ I nð Þ
(17b)

where MðnÞ
P;xy is the x-y component of MðnÞ

P . The integral

I nð Þ ¼ 1
2p

R p
�p M

nð Þ
P;xy /ð Þd/ in (17b) is calculated by comput-

ing MðnÞ
P using R(n) in (A2) and integrating over / as

shown below. The echo is a sum of a constant term A0

and a n-dependent term I(n).

3.1 | Mi along the x-axis

Rprep is a 90° RF pulse in �y, so Mi is along the x-axis as
in a standard RARE sequence. From (10), the pseudo
steady-state magnetization MA is

MAx ¼ 1

1þ k2
; MAy ¼ 0; MAz ¼ k

1þ k2
: (18a)

The perpendicular rotating component MP is:

MPx ¼ k2

1þ k2
; MPy ¼ 0; MPz ¼ �k

1þ k2
(18b)

MAx is both symmetric and pi-symmetric in /. Using
Appendix B and Equation (17a), the Fourier coefficients of
MA in Equation (18a) are:

A2n ¼ A�2n ¼ 1
p

Z p

0

cos 2nxð Þ
1þ k2

dx where n ¼ 0; 1; 2; . . .:

(19a)

Using the online integration calculator20, we find that

A0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

S2 þ 1
q ¼ S; A2 ¼ A�2 ¼ Sþ S3 � 2S2

C2 : (19b)

MAz in (18a) is antisymmetric and pi-antisymmetric in
/. Therefore, the Fourier coefficients of MAz are:

Bn ¼ �B�n ¼ �i
p

Z p

0

k � sin nxð Þ
1þ k2

dx n ¼ 1; 3; 5; . . .:

(19c)

Using an integration calculator20

B1 ¼ �B�1 ¼ �i
S� S2

C
: (19d)

A0 in (19b) was originally obtained by Alsop.13

The integral I(n) for Mi in x and phase error ξ is
calculated by Equations (31-35) below. Therefore, the
echo here is equal to Equation (34) with ξ = 0, and I(n)

is equal to I1 in Equation (35a) and Figure 8. From
(17b):

Echo nð Þ ¼ A0 þ I nð Þ ¼ A0 þ I1 ¼ Sþ
1
p

Z p

0

k2

1þ k2
� exp inwð Þd/

(20)

where exp(in w) in (20) is given by Equation (9b).
Lukzen et al14,15 provides an analytic approximation

that converges to the exact solution (20) for n ≳ 8.

3.2 | Multi-echo sequence with a different
first flip angle

Hennig and Scheffler21 showed that using a larger first flip
angle h1 = 90° + h/2 it is possible to increase the signal of
the pseudo steady-state echo A0. We shall analyze this and
provide analytic expressions.

The prep operator is the 90��y excitation followed by the
first periodic operator with flip angle h1. Mi is the magneti-
zation at the beginning of the second periodic operator.
Using (2) and (5)

Mix ¼1� 2C2
0 � sin2 /ð Þ; Miy ¼ �2C2

0 � sin /ð Þcos /ð Þ;
Miz ¼ 2C0S0 � sin /ð Þ:

(21)

Where C0 � cos h1
2

� �
and S0 � sin h1

2

� �
. MA is computed

by substitution of (21) into Equation (10):

MAx ¼
1� 2C2

0sin
2 /ð Þ þ 2C0S0sin2 /ð Þ � CS

1þ C2

S2 sin
2 /ð Þ ;

MAz ¼ C
S
sin /ð Þ �MAx

(22)

where MAx and MAz are the x and z components of MA. To
find h1 that maximizes MAx, we calculate dMAX

dh1
¼ 0. The

result is
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cos h1ð Þ � C
S
¼ �sin h1ð Þ ¼ [ h1 ¼ h

2
þ 90�: (23)

The optimal first flip angle that maximizes MA is inde-
pendent of / and depends only on h. Since MAx is symmet-
ric and pi-symmetric and MAz is antisymmetric and pi-
antisymmetric, its Fourier coefficients are given by Equa-
tions (19a) and (19c) with MAx and MAz in (18) replaced
by (22). Using integral calculator20, we find:

A0 ¼ Sþ 2C0S0
C
S
� 2C2

0

� �
� S

2 � S3

C2 : (24a)

If h1 ¼ h
2 þ 90�, Equation (24a) simplifies to

A0 ¼ Sþ S � 1� Sð Þ
1þ S

(24b)

A0 in (24b) is larger by S 1� Sð Þ= 1þ Sð Þ from (19b).
The first echo of this sequence is acquired at the end of

the first periodic operator with flip angle h1, where the mag-
netization is Mi (Equation (21)) and the echo amplitude is:

echo 1 ¼ 1
2p

Z p

�p
Mix þ iMiy
� �

d/

¼ 1� 2C2
0

2p

Z p

�p
sin2 /ð Þd/

¼ 1� C2
0 ¼ S20:

(25)

FIGURE 6 A, Comparison between optimized RARE
sequences (the first L flip angles are taken from Figure 4 and
Table 1 and the first L echoes are divided by R(m) in
Equation (30)) to constant flip sequences. The RF pulses are non-
selective and T1 = T2 = ∞. (1) Optimized with h = 60°. (2)
Constant flip with h = 60°. (3) Optimized with h = 25°. (4)
Constant flip. h = 25°. B, Comparison between optimized RARE
sequences (flip angles and echo compensation) to constant flip
sequences for T1/T2 = 1000/100 ms with echo spacing of 5 ms.
The RF pulses are slice-selective SLR linear phase. (1) Optimized
with h = 60°. (2) Constant flip with h = 60°. (3) Optimized.
h = 25°. (4) Constant flip. h = 25°

FIGURE 7 A, RF flip angles of a train with 40 pulses and echo
spacing of 5 ms. The first L = 4 pulses sets the magnetization to
MAmax for h = 60°. Increasing the flip angles to 140° toward the end
reduces signal decay and image blurring. B, Signal with T1/T2 of 1000/
100 ms and echo space of 5 ms with flip angles from Figure 7A. The
signal with constant flip angle of 60° is shown in Figure 6B at graph
(1). The signal in this Figure decays less than in Figure 6B graph (1)
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The amplitudes of the echoes from the second to the
last are given by (17b):

Echo nð Þ ¼ A0 þ I nð Þ: (26)

I(n) is calculated in Appendix D using the matrix R(n)

in Equation (A2). It is a sum of 2 integrals in Equa-
tion (D6). These integrals do not have an analytic solution,
but can be easily calculated by numerical integration. Note
that the echo with n = 1 in (26) is the second acquired
echo, and the amplitude of the first echo is given by (25).
The echo amplitudes of the Hennig-Scheffler sequence for
h = 90° and 120° are plotted in Figure 5 in reference.21

3.3 | Multi-echo sequence with optimized
initial magnetization Mi

To maximize MA and minimize MP, we must align the ini-
tial magnetization Mi as close as possible to VA. If Mi and
VA are aligned for all /, maximum pseudo steady-state
MAmax (Equation (11b)) is obtained, and the echo signal is

EPSS ¼ 1
2p

Z p

�p

d/ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p ¼ 1
p

Z p

0

d/ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p : (27)

A similar result is given by Alsop (see Figure 1 and
equation (8) in reference (13)). This integral can be easily
evaluated numerically, but has no simple analytic solution.
EPSS in (27) is the highest possible signal for a given h as
shown by Figure 3, which compares the pseudo steady-
state echo signal of Equation (19b), where Mi is along x,
Equation (24b) with h1 ¼ h

2 þ 90� and Equation (27) with
maximum pseudo steady-state MAmax vs h.

To align Mi with VA for all /, we vary the flip angles
h1 to hL of the first L RF pulses, such that Rprep consists
of L RF pulses. The 2 9 2 unitary matrix of Rprep is:

Rprep ¼
YL
k¼1

Ckz iSk
iSk Ckz�1

� �
� R �90ð Þy: (28)

Where Sk, Ck is sin(hk/2) and cos(hk/2), respectively,
k = 1-L. Mi ¼ Mix; Miy; Miz

� �T is calculated from Rprep

using (5) and RMA ¼ jMAj
jMAmaxj is computed using (11c). The

optimal flip angles h1 to hL are obtained when RMA is as
close as possible to 1. Since RMA depends on /, the opti-
mization minimizes

d � 1 � 1
2p

Z p

�p
RMA /ð Þ d/: (29)

d � 0 implies that Mi is aligned with VA and MP is
close to zero for all /. h1 to hL that minimize d are com-
puted with the Nelder-Mead minimization algorithm
(MATLAB “fminsearch” and reference (22)). For all flip
angles 180° ≥ h ≥ 20°, the minimization converges within
a few iterations. The number L of pulses required to reduce
d below a given threshold vary with flip angle, where for
large flip angles (h ≥ 110°) L = 2 pulses and for low flip
angles (h ≤ 25°) L = 6. The minimization of d is carried
out for each h, and a table of optimal flip angles vs h is
created. The (arbitrary) threshold of d is set to 1%, ie,
d ≤ 0.01 for all h. We have segmented the flip angles into
5 segments with different L in each segment. Table 1 lists
the flip angles range, L and maximum d, referred to as
dmax, in each segment. dmax and L are larger for lower flip
angles. The small dmax in the table indicates that RMA is
close to 1 and maximum pseudo steady-state is obtained
for all / and h. The table of optimized flip angles h1 to hL
vs h is shown in Figure 4. This table needs to be calculated
only once. For any user-selected h, the optimal set of flip
angles is picked from the table.

To verify that Mx /ð Þ and Mz /ð Þ after the first L pulses
are fully aligned with MAmax, we calculated Mx /ð Þ and
Mz /ð Þ for all h and / after L pulses using the flip angles h1
to hL from Figure 4, and compared them to the theoretical

FIGURE 8 The integral I1 (Equation (35a); top Figure) and I2
(Equation (35b); bottom Figure) for n = 1-120 RF pulses. Flip
angle = 80°
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result in Equation (11b). The comparison showed very good
agreement for all / and h. Figure 5 shows calculated
Mx /ð Þ and Mz /ð Þ for / = 0°-360° and flip angles h = 25°
and 90° together with the theoretical MAmax in Equa-
tion (11b).

Figure 4 shows that h1 to hL are much higher than the
corresponding flip angle h of the pulse train. Therefore,
echoes 1 to L are much higher than echo L + 1 to the end
of the train, and must be compensated to ensure equal
amplitudes for all echoes from 1 to the end of the train.
This is done by calculating the ratio R(m) between echo m
(m = 1-L) to EPSS, because the amplitude of the echoes
from L + 1 to the end is EPSS.

R mð Þ ¼ E mð Þ
EPSS

: (30)

E(m) is the amplitude of echo m

E mð Þ ¼ 1
2p

Z p

�p
M mð Þ

xy /ð Þ d/

M mð Þ
xy /ð Þ is calculated from its Cayley-Klein parameters and

Equation (5).
R(m) vs h is computed by Equation (30) and stored in a

table (not shown). When the user selects h, echoes 1 to L
are compensated by dividing the k-space data of the first L
echoes by R(m) (m = 1-L) during reconstruction.

Figure 6A compares echo amplitudes with h1 to hL opti-
mization and R(m) compensation, to echo amplitudes
acquired with constant flip angles and Mi along x. All
echoes were calculated with Equation (16c). Graphs (1)
and (3) show the optimized and compensated echoes for
flip angles h = 25° and 60°. Graphs (2) and (4) show the
constant flip angles echoes for h = 25° and 60°. The RF
pulses in Figure 6A are non-selective and relaxation is
ignored. The echoes in graphs (1) and (3) are stable from
echo 1, which enables scanning tissues with short T2. As
expected, the echo amplitudes in graphs (1) and (3), where
Mi � MA, are higher than in graphs (2) and (4).

The above h1 to hL optimization and echo compensation
neglects relaxation and assumes that the RF pulses are

non-selective. To examine the validity of the results in a
more realistic sequence, we simulated the sequence in Fig-
ure 1 with T1 = 1000 ms, T2 = 100 ms and selective RF
pulses. The excitation and refocusing pulses were linear
phase Shinnar-Le Roux (SLR)16 pulses with bandwidth of
1 kHz and 1.9 kHz, respectively, and echo spacing of
5 ms. The off-resonance vector ℑ had 160 points from
�1.5 kHz to 1.5 kHz. Echo amplitudes are shown in Fig-
ure 6B for flip angles h = 60° and 25°. Graphs (1) and (3)
show optimized and compensated echo amplitudes with h1
to hL taken from Figure 4 and echo compensation ratios R
(m) taken from the table that we used in Figure 6A. Graphs
(2) and (4) in Figure 6B show echo amplitudes with con-
stant flip angles of h = 25° and 60°. The echoes in graphs
(1) and (3) decay smoothly from echo 1 due to relaxation,
and have higher amplitudes than the echoes in graphs (2)
and (4). These results show that the h1 to hL flip angle
optimization and echo compensation can be used success-
fully with slice-selective pulses and finite relaxation times.

3.4 | RF flip angles optimization from hL to
the end of the echo train

As shown in the previous section, maximum pseudo
steady-state magnetization MAmax is achieved after L RF
pulses for any h, and Mi is aligned with VA. For low h,
the z component of MAmax is larger and the x component
(and the signal) is smaller. For larger h, the z component
decreases and the x component increases. This is evident
from Figure 3 where the echo signal increases with flip
angle. We can use this to our advantage, by setting the first
L pulses to MAmax with a low flip angle, and then increase
h gradually toward the end of the echo train, while increas-
ing the signal. In the absence of relaxation, if Mi is aligned
with VA and the flip angle gradually increases, the magne-
tization M follows VA.

8 As h increases, VA and M remain
aligned, and rotate toward the x-axis and the signal
increases. If relaxation is present, the decay of the signal
along the echo train due to relaxation becomes more mod-
erate if h increases. This is very useful because signal
decay along the train broadens the point spread function
which causes image blurring. Therefore, increasing the flip
angle reduces image blurring.

Figure 6B shows that if the flip angle h after the first L
RF pulse is retained, there is significant signal decay along
the train due to relaxation. To minimize signal decay, the
flip angle gradually increases to maximize the signal
toward the end of the train. Figure 7A shows the flip
angles for a train with 40 pulses and echo space of 5 ms.
After L = 4 pulses, MAmax with flip angle h = 60° is
achieved. In later RF pulses, h increases exponentially
toward 140°. The echo amplitude for a sample with
T1 = 1000 ms and T2 = 100 ms is shown in Figure 7B.

TABLE 1 Flip angle ranges, number of pulses L, and maximum
d in each segment

Segment

Range of flip
angles (degrees)
in each segment

Number
of pulses, L dmax

1 20-30 6 0.0036

2 31-40 5 0.0020

3 41-75 4 0.0006

4 76-110 3 2.5 9 10�4

5 111-180 2 1.1 9 10�4
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The signal decay is much more moderate compared to the
decay with a constant flip of 60° shown in Figure 6B
graph (1). In general, the optimal flip angles to use depend
on relaxation times, echo train length (ETL), the amount of
signal decay that one can tolerate and the location in the
train of the echo at the k-space center. Since an acceptable
signal decay is subjective and depends on many parame-
ters, there is no unique optimal set of flip angles. Optimiza-
tion methods for different applications are found in
references.8,23,24

4 | ANALYSIS AND CORRECTION
OF PHASE ERRORS

In this section, we shall calculate the signals in case the
initial magnetization Mi, which is assumed to be on the x-
axis, is phase-shifted from the x-axis toward the y-axis by
system imperfections, and then show how to correct it.
Phase shifts of Mi toward the y-axis are caused by eddy
currents and/or inaccurate gradient pulses. They increase
significantly at off-center locations25 or after strong gradi-
ent pulses in diffusion weighted sequences.26 To simplify
the analysis, we ignore relaxation and assume a constant
flip angle.

MA is in the x-z plane, so the y component of Mi is
perpendicular to MA and oscillates in a plane perpendicular
to MA, which causes artifacts. Suppose the initial magneti-
zation Mi after the 90��y excitation pulse is phase-shifted
due to system imperfections by ξ radians:

Mi ¼ Mi cosn � x̂þ sinn � ŷð Þ:
Where x̂ and ŷ are unit vectors along x and y. For long

TR scans, Mi ¼ M0 ¼ 1. We substitute Mi into Equa-
tion (10), to find the rotating magnetization Mp:

Mpx ¼ k2

1þ k2
Mix; Mpy ¼ Miy; Mpz ¼ �k

1þ k2
Mix (31a)

where Mix = Mi cosξ and Miy = Mi sinξ.
The pseudo steady-state magnetization MA is

MAx ¼ Mi cosn

1þ k2
; MAz ¼ k MAx (31b)

The magnetization M(n) after n RF pulses is calculated
with the matrix R(n) in (A2). MA is not affected by R(n),

and MðnÞ
P in Equation (A5) is obtained by multiplying R(n)

by MP ¼ Mpx; Mpy; Mpz
� �T . The echo is computed by inte-

grating M nð Þ ¼ MA þM nð Þ
P over / from �p to p. From

(A2) and (31), we calculate the contribution of MP to the
echo:

Re echoð ÞMP ¼
1
2p

Z p

�p
c1c22þs22
� ��Mpxþc2s2 1�c1ð Þ�Mpz
� �

d/

þMiy

2p
�
Z p

�p
c2s1d/

(32a)

Im echoð ÞMP¼ � 1
2p

Z p

�p
c2s1 �Mpxd/þ 1

2p

Z p

�p
s1s2 �Mpzd/

þMiy

2p
�
Z p

�p
c1d/: ð32bÞ

s2 = sin(d1) and c2 = cos(d1) are given by (A1a) and
(A1b); c1 = cos(nw) and s1 = sin(nw) are given by (A3).
The right term of (32a) vanishes because w and s1 is sym-
metric in / (Equation (9)) and c2 is antisymmetric (Equa-
tion (A1b)). The left term in (32b) vanishes because c2s1 is
antisymmetric in / and Mpx is symmetric (Equation (31a)).
The middle term in (32b) vanishes because s1s2 is symmet-
ric and Mpz antisymmetric. The right term in (32b) is non-
zero because c1 is symmetric in /. The full echo is
obtained by adding the integral over / of MA (Equa-
tion (31b)) to Equation (32). Assuming Mi = 1:

Re echoð ÞMA ¼
1
2p

Z p

�p
MAxd/¼ 1

2p

Z p

�p

cosn

1þ k2
d/¼ S � cosn:

(33)

The final echo is a sum of (32) and (33):

Echo ¼ I1 þ Sð Þ � cosnþ iI2 � sinn (34)

where I1 is given by:

I1 ¼ 1
2p

Z p

�p
c1c22þ s22
� � � k2

1þk2
� c2s2 1� c1ð Þ � k

1þk2

	 

d/

and I2 is

I2 ¼ 1
2p

�
Z p

�p
c1d/

substituting s2 ¼ sin d1ð Þ ¼ 1ffiffiffiffiffiffiffiffi
1þk2

p ; and c2 ¼ cos d1ð Þ ¼
kffiffiffiffiffiffiffiffi
1þk2

p into I1:

I1 ¼ 1
2p

Z p

�p

k2

1þ k2
� cos nwð Þ d/¼ 1

p

Z p

0

k2

1þ k2
� exp inwð Þ d/

(35a)
I2 ¼ 1

2p

Z p

�p
c1d/¼ 1

2p

Z p

�p
cos nwð Þ d/¼ 1

p

Z p

0
exp inwð Þ d/:

(35b)

Both I1 and I2 have no simple analytic expression, but
can be easily evaluated numerically. Figure 8 shows I1 and
I2 for n = 1-120 RF pulses and flip angle h = 80°. As
expected I1 oscillates, but decays to zero after a few pulses,
while I2 oscillations persist even after 120 pulses. Equation
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(35) shows that the oscillations of I1 are caused by the
rotation of Mpx in (31a) by nw radians, and the oscillations
of I2 are caused by the rotation of Mpy = Miy in (31a) by
nw radians.

In summary, the phase error ξ generates artifacts
because (i) the imaginary part of the echo in (34) is oscilla-
tory and (ii) the real part of the echo (“good” signal)
amplitude decreases by cosξ. To eliminate the oscillatory
part one can null the imaginary part of the echo, but this
cannot be done in practice due to an unknown instrumenta-
tion-dependent receiver phase.

To recover the original signal S, we use another excita-
tion where the phase of the excitation RF pulse is shifted
by 90° such that ξ ? ξ + 90°. The echo signals E1 and E2

from these 2 excitations are given by

E1 ¼ I1 þ Sð Þ � cosnþ iI2 � sinn;
E2 ¼ � I1 þ Sð Þ � sinnþ iI2cosn:

(36)

E1 and E2 are combined by adding and subtracting E1

and �iE2 to yield the even and odd echoes Eeven and
Eodd

9:

Eeven ¼ E1 þ �iE2ð Þ
2

¼ I1 þ Sþ I2
2

exp inð Þ;

Eodd ¼ E1 � �iE2ð Þ
2

¼ I1 þ S� I2
2

exp �inð Þ:
(37)

The phase difference 2ξ between Eeven and Eodd is used
to recover the signal S ¼ sin h=2ð Þ and eliminate I2:

I1 þ S ¼j Eeven þ expði2nÞ � Eodd j (38)

The full reconstruction algorithm is described in,25

where the phase 2ξ is derived from a low resolution ver-
sion of Eeven and Eodd. The phases of the RF pulses in the
2 excitations are not unique,9 but Equation (36) is the sim-
plest to implement.
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APPENDIX A

ANALYTIC EXPRESSION FOR M AFTER n
RF PULSES

We derive an analytic expression for the magnetization
M(n) after n pulses with equal flip angles h.

As shown in Figure 2, the angle between VA (Equa-
tion (7)) and the z-axis is d1 = 90°–angle(1, k), and
between VA and the x-axis angle 1; kð Þ. The first step in
the calculation is the rotation of MP and MA clockwise
around the y-axis by d1 radians (y points into the page), to
align MA (and VA) with the z-axis and MP with the x-axis.
From Figure 2:

sinðd1Þ ¼ sin½90� � angle 1; kð Þ� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p (A1a)

cos d1ð Þ ¼ sin angle 1; kð Þ½ � ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p (A1b)

After n pulses, MP rotates by nw radians in the clock-
wise direction around the z-axis which is aligned with VA.
The full rotation operator R(n) of MP by the n RF pulses is
a product of 3 rotation matrices: (i) a clockwise rotation, R
(d1)y, of VA by d1 degrees around y to align VA with the z-
axis; (ii) a clockwise rotation R(nw)z of MP by nw radians
around the z-axis; (iii) a rotation R(�d1)y by �d1 around y
to restore VA back to its original position.

R nð Þ ¼ R �d1ð Þy � R nwð Þz � R d1ð Þy

¼
c1c22 þ s22 c2s1 c2s2 1� c1ð Þ
�c2s1 c1 s1s2

c2s2 1� c1ð Þ �s1s2 c1s22 þ c22

0
B@

1
CA (A2)

where s2 � sin(d1) and c2 � cos(d1) are given by (A1) and
c1 � cos (nw), s1 � sin (nw). From Equation (9b),

exp inwð Þ ¼ cos nwð Þ þ isin nwð Þ ¼ exp i
w
2

� �	 
2n

¼ Ccos /ð Þ þ iS
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

ph i2n
:

(A3)

From (A3), c1 ¼ cos nwð Þ ¼ real exp inwð Þ½ � and
s1 ¼ sin nwð Þ ¼ imag exp inwð Þ½ �.

The clockwise rotation matrices in (A2) are27:

R d1ð Þy ¼
cos d1ð Þ 0 �sin d1ð Þ

0 1 0

sin d1ð Þ 0 cos d1ð Þ

0
B@

1
CA;

R nwð Þz ¼
cos nwð Þ sin nwð Þ 0

�sin nwð Þ cos nwð Þ 0

0 0 1

0
B@

1
CA:

(A4)

R(n) in (A2) has no effect on MA, ie, RðnÞMA ¼ MA:

The total magnetization M(n) after n RF pulses is given by:

M nð Þ ¼ R nð Þ �Mi ¼ R nð Þ � ðMA þMPÞ ¼ MA þM nð Þ
P :

(A5)

Where M nð Þ
P ¼ R nð Þ �MP.

MA and MP are given by Equation (10). Computing
M(n) with Equations (2-5) yield identical results to Equa-
tions (A2) and (A5).

APPENDIX B

FOURIER COEFFICIENTS OF
PI-SYMMETRIC AND SYMMETRIC
FUNCTIONS

A function M(x) defined in the range [�p, p] is pi-sym-
metric if

M xð Þ ¼ M x� pð Þ
Or pi-antisymmetric if

M xð Þ ¼ �M x� pð Þ:
Similar to symmetric and antisymmetric functions, any

function in [�p, p] can be written as a sum of a pi-sym-
metric function and another pi-antisymmetric function (ref-
erence (17) page 322).

The Fourier coefficient An of a function M(x) defined in
[�p, p] is given by

An ¼ 1
2p

Z p

�p
M xð Þe�inxdx ¼ 1

2p

Z 0

�p
M xð Þe�inxdxþ

1
2p

Z p

0
M xð Þ � e�inxdx � IA þ IB:

(B1)

In the first integral IA, we substitute x0 ¼ x� p; if M is
pi-symmetric
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IA ¼ 1
2p

Z 0

�p
MðxÞ � e�inxdx¼ 1

2p

Z p

0
Mðx0Þ � e�inx0einpdx0

¼ IB for n even; �IB for n odd:

(B2a)
If M is pi-antisymmetric

IA¼ 1
2p

Z 0

�p
MðxÞ �e�inxdx¼�1

2p

Z p

0
Mðx0Þ �e�inx0einpdx0

¼ IB for nodd;�IB for n even:

(B2b)

Consequently, if M is pi-symmetric, An is 2IB for even
n and 0 for odd n. If M is pi-antisymmetric, An is 2IB for
odd n and 0 for even n. Since the echo amplitude is A0, pi-
antisymmetric M will not contribute to the echo.

A symmetric (antisymmetric) function Msym (Masym) is
defined by

MsymðxÞ ¼ Msymð�xÞ; MasymðxÞ ¼ �Masymð�xÞ
The Fourier coefficients {An}sym ({An}asym) of a sym-

metric (antisymmetric) function MS(x) (MA (x)) are (refer-
ence (17) chapter 7 section 9):

fAngsym ¼ 1
p

Z p

0
Ms xð Þ � cos nxð Þdx;

fAngasym ¼ �i
p

Z p

0
MA xð Þ � sin nxð Þdx:

(B3)

APPENDIX C

MATLAB FUNCTION TO CALCULATE ALL
FOURIER COEFFICIENTS USING
EQUATION (16)

The output matrices MP and Mz contain AðnÞ
k and BðnÞ

k Þ for
all k and all RF pulses n = 1-N.

function [Mp, Mz] = CalcFourier(Flips, T1, T2, esp)

% Calculate Fourier components for all RF pulses with

relaxation using fft.

% input: Flips = vector of flip angles in degrees.

% T1, T2 = relaxation times in msec.

% esp = time between adjacent RF pulses, msec.

% output: Mp, Mz = matrices with all Fourier components

of Mxy and Mz.

% ================================================

% initialize variables.

NRF = length(Flips); % number of RF pulses.

mp = 1; % initial mp is 1.

mz = 0; % initial mz = 0.

T2 = min(T1, T2);

N = 4*NRF + 1;

Mp = zeros(N, NRF); % initialize Mp matrix

Mz = zeros(N, NRF); % initialize Mz matrix

a = cosd(Flips/2); % alpha of x RF pulses.

b = 1j*sind(Flips/2); % beta of x RF pulses.

E1 = exp(-esp/(2*T1));

E2 = exp(-esp/(2*T2));

z = exp(1j*(0:N - 1)*2*pi/N).; % N equally spaced

angles.

c1 = conj(a).*b;

c2 = abs(a).^2 - abs(b).^2;

c3 = conj(a).*conj(b);

% loop through all RF pulses.

for j = 1:NRF;

mp1 = (E2*conj(z)*conj(a(j))).^2.*mp - E2^2*b(j)

^2*conj(mp) . . .

+ 2*E1*E2*c1(j)*conj(z).*mz + 2*E2*conj(z)*(1 - E1)

*c1(j);

mz = -2*E2*E1*real(c3(j)*conj(z).*mp) + E1^2*c2(j)

*mz + (1 - E1)*(E1*c2(j) + 1);

mp = mp1;

Mp(:, j) = mp;

Mz(:, j) = mz;

end;

% Fourier transform.

Mp = fftshift(fft(Mp), 1)/N;

Mz = fftshift(fft(Mz), 1)/N;

APPENDIX D

CALCULATION OF THE ECHO AMPLITUDE
OF THE HENNIG-SCHEFFLER MULTI-SPIN-
ECHO SEQUENCE

In this Appendix, we calculate the integral IðnÞ in Equation
(17b) for the Hennig and Scheffler sequence,21 where the
flip angle h1 of the first periodic operator is h1 = 90° + h/
2. IðnÞ in (17b) is the contribution of the rotating magneti-
zation MP to the echo. We use R(n) in Equation (A2) to
calculate it, as we did in Equation (32).

The initial magnetization Mi = [Mix, Miy, Miz]
T and the

pseudo steady-state magnetization MA of this sequence are
given by (21) and (22). From Equation (10), the x, y, and z
components of MP are:

MPx ¼ �kMiz þ k2Mix

1þ k2
; MPy ¼ Miy; MPz ¼ �MPx

k
:

(D1)

The relation between h and h1 are given by Equation

(23), ie, cos h1ð Þ cos
#
2ð Þ

sin h
2ð Þ ¼ �sin h1ð Þ. Using this relation and

substituting Mi (Equation (21)) into (D1), we can write MP
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in terms of the flip angles and /:

MPx ¼2C2
0 �

k2cos2 /ð Þ
1þ k2

; MPy ¼ �C2
0 � sin 2/ð Þ;

MPz ¼ �MPx

k

(D2)

where C0 ¼ cos h1
2

� �
.

To find MðnÞ
P , the contribution of MP to the echo, we

multiply MP by R(n) (Equation (A5)), ie, we substitute MP

in (D2) into Equation (32). The imaginary part (Equation
(32b)) is

Im echoð ÞMP ¼ 1
2p

Z p

�p
ð�c2s1 �Mpx þ s1s2 �Mpz þ c1 �MpyÞ

d/ ¼ 0

(D3)

where s2 = sin(d1) and c2 = cos(d1) are given by (A1a) and
(A1b), c1 = cos(nw) and s1 = sin(nw) are given by (A3).
All the terms in (D3) are antisymmetric in / and vanish in
the integration.

The real part (Equation (32a)) is:

Re echoð ÞMP ¼
1
2p

Z p

�p

	
c1c22þ s22
� � �Mpxþ c2s2 1� c1ð Þ �Mpz

þMpy � c2s1


d/:

(D4)

To evaluate (D4), we substitute (D2) into (D4). The
result is

I nð Þ ¼ Re echoð ÞMP ¼ 1
2p

Z p

�p
2C2

0 �
�
c22c1 � cos2

�
/
�

� c2s1 � sin /ð Þcos /ð Þ� d/:
(D5)

From the definitions of c2, c1, and s1:

I nð Þ ¼ C2
0

p
�

Z p

�p

k2

1þ k2
cos2 /ð Þ � cos nwð Þd/�



Z p

�p

kffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

p sin 2/ð Þ
2

sin nwð Þd/
)
:

(D6)

Both integrals in (D6) do not have an analytic solution,
but can be easily calculated by numerical integration. The
full echo amplitude is (Equations (17b) and (24b)):

Echo nð Þ ¼ A0 þ I nð Þ ¼ Sþ S
1� S
1þ S

þ I nð Þ (D7)

As explained above in Equation (25), the amplitude of
the first echo is S20 ¼ sin2 h1

2

� �
: The echo in (D7) with n = 1

is the second acquired echo.
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