Analysis of the multi-echo spin-echo pulse sequence

Yuval Zur

GE Healthcare, Haifa, Israel

Correspondence

Yuval Zur, GE Healthcare, Haifa, Israel. Email: yuval.zur@ge.com

Abstract

The multi-echo spin-echo sequence is a series of operators, referred to as periodic operators. Each periodic operator consists of a free rotation (no RF), a refocusing RF pulse, and another free rotation, identical to the first one. A preparation operator that precedes the periodic operators converts the equilibrium magnetization $\mathbf{M}_{\mathbf{z}}$ into an initial magnetization $\mathbf{M}_{\mathbf{i}}$. It is shown that a multi-echo sequence is equivalent to a simple rotation of the magnetization about a tilted axis. The component of $\mathbf{M}_{\mathbf{i}}$ along the rotation axis is stationary and provides a stable signal, denoted pseudo steady-state. The perpendicular component rotates and eventually dephases. Using this model, we derive analytic expressions to the signal for different preparation operators, and show how to align $\mathbf{M}_{\mathbf{i}}$ with the rotation axis such that the signal is maximized. A simple and efficient algorithm is presented to calculate the Fourier coefficients of the magnetization during the sequence using the discrete Fourier transform. Finally, formulas of the echo signal when unavoidable phase errors are generated are derived. We show how to eliminate artifacts caused by these errors and restore the original image.

KEYWORDS

discrete Fourier transform, Fourier coefficients, multi-spin-echo sequence, phase errors, pseudo steadystate

1 | INTRODUCTION

In this work, we shall analyze the multi-echo spin-echo sequence as shown in Figure 1. It is known in imaging as RARE, ${ }^{1}$ Fast Spin Echo (FSE), or Turbo Spin Echo (TSE). It consists of a set of N periodic operators $\mathbf{R}_{\mathbf{p}}$, preceded by an initial magnetization $\mathbf{M}_{\mathbf{i}}$ which is generated by a preparation operator $\mathbf{R}_{\mathbf{p r e p}}$ from the equilibrium magnetization $\mathbf{M}_{\mathbf{z}}$. Each periodic operator consists of a rotation around the z-axis by ϕ radians, an RF pulse with flip angle θ, and another rotation around the z-axis by ϕ radians. The flip angles θ can vary from one periodic operator to another. An echo signal is acquired between 2 adjacent periodic operators. In NMR imaging, the phase ϕ is generated by gradients, but our analysis also hold for position-independent ϕ. The multi-spinecho sequence was analyzed extensively in the literature using the Extended Phase Graph (EPG) algorithm. ${ }^{2-9}$ Le Roux and Hinks ${ }^{10}$ used a similar algorithm to calculate echo
amplitudes, and devised an algorithm to stabilize the echoes at the beginning of the echo train.

It is well known ${ }^{7,8}$ that the magnetization $M(\phi)^{(n)}$ after n periodic operators is a finite linear combination of $\exp (i k \phi)$, where k is an integer (see Equation (14)). The coefficients of this linear combination are called "Fourier coefficients" because they are calculated using the discrete Fourier transform of $M(\phi)^{(n)}$ as shown in Equation (16) below. The EPG algorithm tracks individual Fourier coefficients during the evolution of the magnetization along the echo train. In this work, we use a different approach and analyze the multiecho sequence as a stack of periodic operators. This approach provides new insights, and complements the EPG analysis. To improve clarity and simplify the analysis, we use a vector model to describe the evolution of the magnetization. In some cases (eg, Equations (27), (32) and (D6)), the solution is given in terms of a simple numerical integral, rather than a complicated analytic expression.

In the first section, we show that the multi-echo sequence is equivalent to a simple rotation about a tilted axis. Consequently, the component of $\mathbf{M}_{\mathbf{i}}$ which is aligned with the rotation axis remains unchanged, giving rise to a pseudo steady-state (PSS) signal. ${ }^{5}$ The component of $\mathbf{M}_{\mathbf{i}}$ which is perpendicular to the rotation axis rotates and eventually de-phases. Due to its simplicity, the evolution along the echo train (neglecting relaxation) can be calculated analytically, and analytic expressions for some Fourier coefficients of the magnetization are provided. Based on this analysis, an efficient algorithm using the discrete Fourier transform is presented to compute the Fourier coefficients of the magnetization. In the next section, we calculate the PSS and echo signal for some given initial magnetization $\mathbf{M}_{\mathbf{i}}$. Then, we show how to design $\mathbf{R}_{\text {prep }}$ such that $\mathbf{M}_{\mathbf{i}}$ is aligned with the rotation axis and the signal for a given flip angle θ is maximized. In the last section, this vector model is used to provide closed form formulas for the signal in case of a phase error between the excitation pulse of $\mathbf{R}_{\text {prep }}$ and the first periodic operator, ie, when the Carr-Purcell Meiboom-Gill (CPMG) condition ${ }^{11,12}$ is violated. A method to correct this error is provided.

Alsop ${ }^{13}$ also presented an analysis of the multi-echo sequence and derived the PSS signal $S=\sin (\theta / 2)$ in Equation (19b) below (see (4), (5) and (6) in reference. ${ }^{13}$) Lukzen et al ${ }^{14}$ derived analytic approximations to the pseudo steadystate signal and echo amplitudes without relaxation and later extended it and included relaxation and off-resonance. ${ }^{15}$ The drawbacks of these derivations are: (i) the equations are difficult to evaluate because series expansions and integral evaluations are required; (ii) the approximate expressions for echo amplitudes without relaxation (reference (14) equation (27) and reference (15) equation (36)) converge to the exact solution (Equation (20)) after 8-10 echoes where the transient term $\boldsymbol{I}^{(n)}$ in Equation (20) is already close to zero.

2 | THEORY

The multi-echo pulse sequence is shown in Figure 1 with N periodic operators preceded by the preparation operator $\mathbf{R}_{\text {prep }}$. Without loss of generality, all RF pulses are in the x-axis. If relaxation is ignored, the periodic operator is a sequence of pure rotations. If an operator \mathbf{R} is a rotation or
a set of rotations of the magnetization vector, the axis and angle of rotation fully characterize \mathbf{R}, because the magnitude of the vector is preserved. Since only 2 parameters are needed to characterize \mathbf{R}, it can be described by a 2×2 unitary matrix

$$
\mathbf{R}=\left(\begin{array}{cc}
\alpha & -\beta^{*} \\
\beta & \alpha^{*}
\end{array}\right)
$$

where α and β are called the Cayley-Klein parameters (equations (1) and (2) in reference (16)). We prefer this notation over 3×3 rotation matrices because it simplifies the calculations. If α and β are known, one can calculate the equivalent 3×3 rotation matrix using the matrix located between equations (4) and (5) in reference. ${ }^{16}$ If the initial magnetization is M_{z}, the final magnetization is given by equations (5) and (6) in reference. ${ }^{16}$ The Cayley-Klein parameters α and β of a rotation \mathbf{R} are calculated from the rotation axis and the rotation angle around this axis using equations (1) and (2) in reference. ${ }^{16}$

$$
\begin{gather*}
\alpha=\cos \left(\frac{\psi}{2}\right)+i n_{z} \cdot \sin \left(\frac{\psi}{2}\right) \tag{1a}\\
\beta=i\left(n_{x}+i n_{y}\right) \cdot \sin \left(\frac{\psi}{2}\right) \tag{1b}
\end{gather*}
$$

n_{x}, n_{y}, and n_{z} are the x, y, and z components of a unit vector along the rotation axis and ψ is the rotation angle around this axis. We define positive ψ a clockwise rotation because proton spins rotate in the clockwise direction. ${ }^{16}$

From Equation (1), the rotation matrix $\mathbf{R}_{\mathbf{P}}$ of the periodic operator, with a rotation of ϕ around $z\left(n_{z}=1\right.$, $\left.n_{x}=n_{y}=0\right)$ and an RF flip angle θ around $x\left(n_{x}=1\right.$, $n_{y}=n_{z}=0$), is given by

$$
\begin{align*}
& \mathbf{R}_{\mathbf{P}}=\left(\begin{array}{cc}
\exp \left(\frac{i \phi}{2}\right) & 0 \\
0 & \exp \left(-\frac{i \phi}{2}\right)
\end{array}\right)\left(\begin{array}{cc}
C & i S \\
i S & C
\end{array}\right) \tag{2a}\\
&\left(\begin{array}{cc}
\exp \left(\frac{i \phi}{2}\right) & 0 \\
0 & \exp \left(-\frac{i \phi}{2}\right)
\end{array}\right)=\left(\begin{array}{cc}
C z & i S \\
i S & C z^{-1}
\end{array}\right)
\end{align*}
$$

where $\quad C=\cos \left(\frac{\theta}{2}\right), \quad S=\sin \left(\frac{\theta}{2}\right)$ and $z=\exp (i \phi)$. The Cayley-Klein parameters of $\mathbf{R}_{\mathbf{P}}$ in (2a) are

$$
\begin{equation*}
\alpha_{\mathrm{P}}=C z ; \quad \beta_{\mathrm{P}}=i S . \tag{2b}
\end{equation*}
$$

The rotation operator $\mathbf{R}_{\mathbf{n}}$ after n periodic operators $\mathbf{R}_{\mathbf{p}}$ is

$$
\mathbf{R}_{\mathbf{n}}=\mathbf{R}_{\mathbf{P}}{ }^{n}=\left(\begin{array}{cc}
C z & i S \tag{3}\\
i S & C z^{-1}
\end{array}\right)^{n}
$$

The final α and β are

$$
\begin{equation*}
\binom{\alpha}{\beta}=\mathbf{R}_{\mathbf{n}} \cdot \mathbf{R}_{\text {prep }} \cdot\binom{1}{0} \tag{4}
\end{equation*}
$$

where $\mathbf{R}_{\text {prep }}$ is the 2×2 matrix of the preparation operator (Figure 1). The vector $[1,0]^{T}$ in Equation (4) is the initial α and β, where M is the initial thermal equilibrium magnetization M_{z}. It is obtained by setting $\psi=0$ in Equation (1). The transverse and longitudinal magnetizations after n periodic operators are given by Equations (5) and (6) in reference ${ }^{16}$:

$$
\begin{equation*}
M_{x y}^{(n)}=M_{x}+i M_{y}=2 \alpha^{*} \beta ; \quad M_{z}^{(n)}=\alpha \alpha^{*}-\beta \beta^{*} \tag{5}
\end{equation*}
$$

The rotation axis and rotation angle of $\mathbf{R}_{\mathbf{P}}$ are determined from Equation (2) using Equation (1). The rotation axis, a unit vector with components n_{x}, n_{y}, and n_{z}, is given by

$$
\begin{gather*}
\frac{n_{z}}{n_{x}}=\frac{\operatorname{imag}\left(\alpha_{\mathrm{P}}\right)}{\operatorname{imag}\left(\beta_{\mathrm{P}}\right)}=\frac{C \cdot \sin (\phi)}{S} \tag{6a}\\
n_{y}=\frac{-\operatorname{real}\left(\beta_{\mathrm{P}}\right)}{\sin \left(\frac{\psi}{2}\right)}=0 \tag{6b}
\end{gather*}
$$

$\operatorname{imag}()$ and real() are the imaginary and real part, respectively.

Using (6), the rotation axis of $\mathbf{R}_{\mathbf{P}}$ is a unit vector aligned with the 3-components vector $\mathbf{V}_{\mathbf{A}}$

$$
\begin{equation*}
\mathbf{V}_{\mathbf{A}}=[1,0, \lambda]^{T} \quad \text { where } \lambda \equiv \frac{C \cdot \sin (\phi)}{S} \tag{7}
\end{equation*}
$$

The rotation angle ψ in the clockwise direction around $\mathbf{V}_{\mathbf{A}}$ is

$$
\begin{align*}
& \cos \left(\frac{\psi}{2}\right)=\operatorname{real}\left(\alpha_{\mathrm{P}}\right)=C \cos (\phi) \tag{8}\\
& \sin \left(\frac{\psi}{2}\right)=\frac{S}{n_{x}}=S \sqrt{1+\lambda^{2}}
\end{align*}
$$

From (8)
$\exp \left(i \frac{\psi}{2}\right)=\cos \left(\frac{\psi}{2}\right)+i \sin \left(\frac{\psi}{2}\right)=C \cos (\phi)+i S \sqrt{1+\lambda^{2}}$.

From (9a)
$\exp (i n \psi)=\left[\exp \left(i \frac{\psi}{2}\right)\right]^{2 n}=\left[C \cos (\phi)+i S \sqrt{1+\lambda^{2}}\right]^{2 n}$.

The rotation angle ψ is:

$$
\begin{equation*}
\psi=2 \cdot \operatorname{angle}\left(C \cos \phi, S \sqrt{1+\lambda^{2}}\right) \tag{9c}
\end{equation*}
$$

where "angle" in (9c) is the phase angle of a complex number Z in the $[-\pi, \pi]$ range defined as

```
phase angle of Z \equiv angle (real(Z), imag(Z)).
```


$2.1 \mid$ Vector model

We shall now calculate the magnetization $\mathbf{M}^{(\boldsymbol{n})}=\left[M_{x}, M_{y}, M_{z}\right]^{T}$ after n periodic operators and a given initial magnetization $\mathbf{M}_{\mathbf{i}}$. This is done in 3 steps: (i) write $\mathbf{M}_{\mathbf{i}}$ as a vector sum of 2 vectors: $\mathbf{M}_{\mathbf{A}}$ along $\mathbf{V}_{\mathbf{A}}$ and a vector $\mathbf{M}_{\mathbf{P}}$ perpendicular to $\mathbf{V}_{\mathbf{A}}$; (ii) during the application of $\mathbf{R}_{\mathbf{n}}, \mathbf{M}_{\mathbf{A}}$ does not change while $\mathbf{M}_{\mathbf{P}}$ rotates by $n \psi$ radians in a plane perpendicular to $\mathbf{V}_{\mathbf{A}}$; (iii) add $\mathbf{M}_{\mathbf{A}}$ to the rotated $\mathbf{M}_{\mathbf{P}}$ to obtain the final magnetization $\mathbf{M}^{(n)}$. This is demonstrated in Figure $2 . \mathbf{M}_{\mathbf{P}}$ and $\mathbf{M}_{\mathbf{A}}$ fulfill 3 conditions:

Rotation plane of $\mathbf{M}_{\mathbf{P}}$
FIGURE $2 \mathbf{M}_{\mathbf{i}}$ is decomposed to 2 perpendicular vectors $\mathbf{M}_{\mathbf{P}}$ and $\mathbf{M}_{\mathbf{A}}$, where $\mathbf{M}_{\mathbf{A}}$ is collinear with the rotation axis $\mathbf{V}_{\mathbf{A}}$ in Equation (7). $\mathbf{M}_{\mathbf{A}}$ is in the $X Z$ plane at an angle $\Theta=$ angle $(1, \lambda)$ with the x-axis and $\delta_{1}=90^{\circ}-$ angle $(1, \lambda)$ with the z-axis. n periodic operators rotate $\mathbf{M}_{\mathbf{P}}$ by $n \Psi$ radians in a plane perpendicular to $\mathbf{M}_{\mathbf{A}}$ The final magnetization $\mathbf{M}^{(\mathbf{n})}$ is a vector sum of $\mathbf{M}_{\mathbf{P}}^{(\mathbf{n})}$ (the rotated
$\mathbf{M}_{\mathbf{P}}$), and $\mathbf{M}_{\mathbf{A}}$
(i) $\mathbf{M}_{\mathbf{P}} \cdot \mathbf{M}_{\mathbf{A}}=0$; (ii) $\mathbf{M}_{\mathbf{P}}+\mathbf{M}_{\mathbf{A}}=\mathbf{M}_{\mathbf{i}}$; (iii) $\mathbf{M}_{\mathbf{A}}$ is collinear with $\mathbf{V}_{\mathbf{A}}$. The symbol \cdot is the scalar product of 2 vectors and $\mathbf{M}_{\mathbf{i}}=\left[M_{i x}, M_{i y}, M_{i z}\right]^{T}$. If $\mathbf{M}_{\mathbf{i}}$ is known, $\mathbf{M}_{\mathbf{P}}$ and $\mathbf{M}_{\mathbf{A}}$ that fulfill these conditions are determined uniquely:

$$
\begin{equation*}
\mathbf{M}_{\mathbf{A}}=[1,0, \lambda]^{T} \cdot A ; \quad \mathbf{M}_{\mathbf{P}}=[-\lambda, 0,1]^{T} \cdot B+\left[0, M_{i y}, 0\right]^{T} \tag{10}
\end{equation*}
$$

where $A=\frac{M_{i x}+\lambda M_{i z}}{1+\lambda^{2}} \quad$ and $\quad B=\frac{M_{i z}-\lambda M_{i x}}{1+\lambda^{2}}$.
$\mathbf{M}_{\mathbf{A}}$ in (10) depends on $\mathbf{M}_{\mathbf{i}}$ and the flip angle θ through the parameter λ. The pseudo steady-state (PSS) magnetization $\mathbf{M}_{\mathbf{A}}$ (collinear with $\mathbf{V}_{\mathbf{A}}$) is the projection of $\mathbf{M}_{\mathbf{i}}$ on the rotation axis direction $\mathbf{V}_{\mathbf{A}}$. Therefore, if $\mathbf{M}_{\mathbf{i}}$ is collinear with $\mathbf{V}_{\mathbf{A}}, \mathbf{M}_{\mathbf{A}}$ is maximal. On the other hand, if $\mathbf{M}_{\mathbf{i}}$ is perpendicular to $\mathbf{V}_{\mathbf{A}}$, the pseudo steady-state magnetization $\mathbf{M}_{\mathbf{A}}$ is zero.

The magnetization $\mathbf{M}^{(n)}$ after n periodic operators is calculated in Appendix A. The 3×3 rotation matrix $\mathbf{R}^{(\mathbf{n})}$ after n periodic operators is given by Equation (A2), and the total magnetization $\mathbf{M}^{(n)}$ by Equation (A5). This simplifies the calculation of $\mathbf{M}^{(n)}$ to an evaluation of a 3×3 matrix. (A2) holds only if the flip angle θ is the same for all RF pulses and relaxation is neglected.

Our goal is to maximize $\mathbf{M}_{\mathbf{A}}$ and minimize (or even zero) $\mathbf{M}_{\mathbf{p}}$. This occurs if $\mathbf{R}_{\mathbf{p r e p}}$ tilts M_{z} to the direction of $\mathbf{V}_{\mathbf{A}}$ for all ϕ, such that $\mathbf{M}_{\mathbf{P}}=0$. From Equation (10)

$$
\begin{equation*}
\mathbf{M}_{\mathbf{P}}=0 \quad \Rightarrow \quad M_{i z}=\lambda M_{i x} \quad \text { and } M_{i y}=0 . \tag{11a}
\end{equation*}
$$

If TR $>T_{1}, M_{i x}^{2}+M_{i z}^{2}=M_{0}=1$. Using (11a):

$$
\begin{equation*}
M_{i x}=\frac{1}{\sqrt{1+\lambda^{2}}} ; \quad \mathbf{M}_{\mathrm{Amax}}=\frac{[1,0, \lambda]^{T}}{\sqrt{1+\lambda^{2}}} \tag{11b}
\end{equation*}
$$

$\mathbf{M}_{\text {Amax }}$ is the maximum pseudo steady-state magnetization for a given ϕ and θ. If $\mathbf{M}_{\mathbf{P}} \neq 0$, then $\left|\mathbf{M}_{\mathbf{A}}\right|<\left|\mathbf{M}_{\mathbf{A m a x}}\right|$. Define

$$
\begin{equation*}
R_{\mathrm{MA}} \equiv \frac{\left|\mathbf{M}_{\mathbf{A}}\right|}{\left|\mathbf{M}_{\mathrm{A}} \mathbf{m a x}\right|}=|A| \cdot \sqrt{1+\lambda^{2}}=\frac{\left|M_{i x}+\lambda M_{i z}\right|}{\sqrt{1+\lambda^{2}}} \tag{11c}
\end{equation*}
$$

where $0 \leq R_{\mathrm{MA}} \leq 1 . R_{\mathrm{MA}}=1$ indicates maximal \mathbf{M}_{A} and zero $\mathbf{M}_{\mathbf{P}}$. Therefore, an optimal $\mathbf{R}_{\text {prep }}$ generates $\mathbf{M}_{\mathbf{i}}$ with the largest possible R_{MA}. Below we shall optimize $\mathbf{R}_{\text {prep }}$ by maximizing $R_{\text {MA }}$. Equation (11) was originally derived by Alsop (equation (6) in reference (13)).

2.2 | Relaxation

In a real experiment, T_{1} and T_{2} relaxation cannot be neglected, so the periodic operator can no longer be
represented by pure rotations. The nth periodic operator in a pulse sequence with N RF pulses operates on the ($n-1$) magnetization vector $\boldsymbol{M}^{(\mathbf{n}-1)}$ to yield the nth magnetization vector $\mathbf{M}^{(\mathbf{n})}$. This is a product of 3 operators: (i) a rotation by ϕ around z plus T_{1} and T_{2} relaxation; (ii) an RF pulse of flip angle θ around x; (iii) another rotation by ϕ around z with T_{1} and T_{2} relaxation. The magnetization vector is $\mathrm{M}=\left[\begin{array}{lll}M_{x y} & M_{x y}^{*} & M_{z}\end{array}\right]^{T}$ where $M_{x y}=M_{x}+i M_{y}$ and $M_{x y}^{*}=M_{x}-i M_{y}$. Starting from $\boldsymbol{M}^{(\mathbf{n}-1)}$, the magnetization $\mathbf{M}_{\mathbf{1}}$ after the first rotation by ϕ and relaxation is

$$
\begin{align*}
\left(\mathbf{M}_{\mathbf{1}}\right)= & \left(\begin{array}{ccc}
E_{2} \exp (-i \phi) & 0 & 0 \\
0 & E_{2} \exp (i \phi) & 0 \\
0 & 0 & E_{1}
\end{array}\right)\left(\mathbf{M}^{(\mathbf{n} \mathbf{- 1})}\right) \\
& +\left(\begin{array}{c}
0 \\
0 \\
1-E_{1}
\end{array}\right) . \tag{12a}
\end{align*}
$$

Where $E_{1}=\exp \left(-\tau / T_{1}\right), E_{2}=\exp \left(-\tau / T_{2}\right) . \tau$ is half the time between adjacent RF pulses. The RF operator is a rotation by the flip angle θ around x^{16} :

$$
R F=\left(\begin{array}{ccc}
\left(\alpha^{*}\right)^{2} & -\beta^{2} & 2 \alpha^{*} \beta \tag{12b}\\
-\left(\beta^{*}\right)^{2} & \alpha^{2} & 2 \alpha \beta^{*} \\
-\alpha^{*} \beta^{*} & -\alpha \beta & \alpha^{*} \alpha-\beta^{*} \beta
\end{array}\right)
$$

α and β are the Cayley-Klein parameters of a rotation around x (Equation (1)), $\alpha=\cos \left(\frac{\theta}{2}\right)$ and $\beta=i \sin \left(\frac{\theta}{2}\right)$. To obtain $\mathbf{M}^{(\mathbf{n})}, \mathbf{M}_{\mathbf{1}}$ in (12a) is rotated by the RF operator in (12b) and then by the third operator, which is identical to the rotation and relaxation matrix in (12a):

$$
\left.\begin{array}{rl}
\left(\mathbf{M}^{(\mathbf{n})}\right.
\end{array}\right)=\left(\begin{array}{ccc}
E_{2} \exp (-i \phi) & 0 & 0 \\
0 & E_{2} \exp (i \phi) & 0 \tag{12c}\\
0 & 0 & E_{1}
\end{array}\right) .
$$

We consolidate the operators in (12a) and (12c) and relate $\boldsymbol{M}^{(\mathbf{n}-1)}$ to $\mathbf{M}^{(\mathbf{n})}$ in a single Equation:

$$
\begin{align*}
M_{x y}^{(n)}(\phi)= & E_{2}^{2} e^{-2 i \phi}\left(\alpha^{*}\right)^{2} \cdot M_{x y}^{(n-1)}-E_{2}^{2} \beta^{2} \cdot M_{x y}^{*(n-1)} \\
& +2 E_{1} E_{2} e^{-i \phi} \alpha^{*} \beta \cdot M_{z}^{(n-1)}+2\left(1-E_{1}\right) E_{2} e^{-i \phi} \alpha^{*} \beta \tag{13a}
\end{align*}
$$

$$
\begin{align*}
M_{z}^{(n)}(\phi)= & -E_{1} E_{2} e^{-i \phi} \alpha^{*} \beta^{*} \cdot M_{x y}^{(n-1)}-E_{1} E_{2} e^{i \phi} \alpha \beta \cdot M_{x y}^{*(n-1)} \\
& +E_{1}^{2}\left(\alpha^{*} \alpha-\beta^{*} \beta\right) \cdot M_{z}^{(n-1)} \\
& +\left(1-E_{1}\right) E_{1}\left(\alpha^{*} \alpha-\beta^{*} \beta\right)+1-E_{1} \tag{13b}
\end{align*}
$$

$2.3 \mid$ Fourier representation

From (5), (13) and the EPG analysis, ${ }^{3,5,7}$ it can be shown that $\mathbf{M}^{(\mathbf{n})}$ in sequence with N periodic operators can be written as a power series in $z=\exp (i \phi)$ with powers from $-2 N$ to $2 N$:
$M_{x y}^{(n)}(\phi)=\sum_{k=-2 N}^{2 N} A_{k}^{(n)} \cdot z^{k} ; \quad M_{z}^{(n)}(\phi)=\sum_{k=-2 N}^{2 N} B_{k}^{(n)} \cdot z^{k}$
A_{k} and B_{k} are ϕ independent complex numbers, called the Fourier coefficients of $\mathbf{M}^{(\mathbf{n})}$. If $M_{x y}^{n}(\phi)$ and $M_{z}^{(n)}(\phi)$ are known analytically (see below), A_{k} and B_{k} can be calculated by integration (reference (17) section 7.7):

$$
\begin{align*}
& A_{k}^{(n)}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} M_{x y}^{(n)}(\phi) e^{-i \phi k} d \phi \\
& \quad B_{k}^{(n)}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} M_{z}^{(n)}(\phi) e^{-i \phi k} d \phi \tag{15a}
\end{align*}
$$

When ϕ is generated by a gradient, all z^{k} with $k \neq 0$ in (14) de-phase and disappear, and $M_{x y}^{(n)}=A_{0}^{(n)}$ and $M_{z}^{(n)}=B_{0}^{(n)}$. From (15a), the nth sampled signal $M_{x y}^{(n)}$ referred to as the nth echo $\operatorname{Echo}(n)$ is

$$
\begin{equation*}
\text { Echo }(n)=M_{x y}^{(n)}=A_{0}^{(n)}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} M_{x y}^{(n)}(\phi) d \phi \tag{15b}
\end{equation*}
$$

In Appendix B, we show that Equation (15) can be simplified for pi-symmetric (pi-antisymmetric) functions and that only the pi-symmetric part of $M_{x y}^{(n)}$ contributes to the echo A_{0}.

The drawback of Equation (15) is that a continuous M (ϕ) is required to evaluate the integrals accurately. Alternatively, the $4 N+1$ coefficients A_{k} and B_{k} in Equation (14) can be computed by calculating $M_{x y}^{(n)}(\phi)$ and $M_{z}^{(n)}(\phi)$ in Equation (5) (no relaxation) or (13) (with relaxation) at discrete $4 N+1$ angles ϕ_{j} from 0 to 2π. Substitution of these $M_{x y}^{(n)}\left(\phi_{j}\right)$ and $\boldsymbol{M}_{z}^{(n)}\left(\phi_{j}\right)$ in (14) is equivalent to solving a system with $4 N+1$ unknowns (A_{k} and B_{k}) with $4 N+1$ Equations. The solution $A_{k}^{(n)}$ and $B_{k}^{(n)}$ is very stable and simple (reference (18) section 8.1, reference (19) section 10.3) when ϕ_{j} is set to $4 N+1$ equally spaced angles ϕ_{j} from 0 to 2π, ie, $\phi_{j}=\frac{2 \pi j}{4 N+1}$ where $j=0$ to $4 N$, and is given by

$$
\begin{align*}
A_{k}^{(n)} & =\frac{1}{4 N+1} \sum_{j=0}^{4 N} M_{x y}^{(n)}\left(\phi_{j}\right) \cdot \exp \left[-i \phi_{j} k\right] \tag{16a}\\
& =\frac{1}{4 N+1} \operatorname{DFT}\left(M_{x y}^{(n)}\left(\phi_{j}\right)\right. \\
B_{k}^{(n)} & =\frac{1}{4 N+1} \sum_{j=0}^{4 N} M_{z}^{(n)}\left(\phi_{j}\right) \cdot \exp \left[-i \phi_{j} k\right] \tag{16b}\\
& =\frac{1}{4 N+1} \operatorname{DFT}\left(M_{z}^{(n)}\left(\phi_{j}\right)\right)
\end{align*}
$$

where DFT is the Discrete Fourier Transform with $4 N+1$ points. A MATLAB implementation of this algorithm to calculate $A_{k}^{(n)}$ and $B_{k}^{(n)}$ (with relaxation) for all k and all n between 1 and N is shown in Appendix C. This simple and efficient algorithm is about 3 times faster (measured with the MATLAB internal timer) than the EPG algorithm. ${ }^{5,7}$

Usually, we are only interested in the echo A_{0}. In this case, $M_{x y}^{(n)}(\phi)$ and $M_{z}^{(n)}(\phi)$ needs to be calculated only for $2 N+1$ equally spaced angles, ie, $\phi_{j}=\frac{2 \pi j}{2 N+1}$ with $j=0$ to $2 N$. There are not enough Equations (only $2 N+1$) to solve all A_{k} and B_{k}. As shown in reference (18) section 3.2, the DFT operator in (16a) with $2 N+1$ points provides linear combinations of A_{k} terms for $k \neq 0$ (aliasing), whereas A_{0} for $k=0$ remains intact. Similarly, (16b) with $2 N+1$ points provides linear combinations of B_{k} terms for $k \neq 0$, and B_{0} remains intact. Therefore, A_{0} and B_{0} are calculated by a DFT with $2 N+1$ points and $k=0$:

$$
\begin{align*}
& A_{0}^{(n)}=\frac{1}{2 N+1} \sum_{j=0}^{2 N} M_{x y}^{(n)}\left(\phi_{j}\right)=\operatorname{mean}\left(M_{x y}^{(n)}\right) \tag{16c}\\
& \quad B_{0}^{(n)}=\frac{1}{2 N+1} \sum_{j=0}^{2 N} M_{z}^{(n)}\left(\phi_{j}\right)=\operatorname{mean}\left(M_{z}^{(n)}\right)
\end{align*}
$$

where mean () in $(16 \mathrm{c})$ is the average of all $2 N+1$ values of $M_{x y}\left(\phi_{j}\right)$ and $M_{z}\left(\phi_{j}\right)$.

The analysis above assumes non-selective hard RF pulses and ignores off-resonance effects. This analysis and the computer program in Appendix C can be extended to slice-selective soft pulses, by calculating the b_{1} waveforms of all the RF pulses, and dividing each waveform into piece-wise constant segments as in Figure 1 in reference. ${ }^{16}$ Off-resonance effects are calculated by defining an offresonance vector \mathfrak{I} that extends in and beyond the bandwidth of the pulses. The magnetization $\mathbf{M}_{\mathbf{P}}$ in Appendix C after the soft excitation 90° pulse vs \mathfrak{I} is calculated as explained in Figures 4 and 5 in reference. ${ }^{16}$ The α and β parameters of the RF pulses vs \mathfrak{I} are calculated from the b_{1} waveform with Equations (1-4) and Figure 1 in reference. ${ }^{16}$ These α, β become 2 -dimensional matrices that depend on off-resonance \mathfrak{I} and the RF pulse number n, rather than vectors with N components. They are used

FIGURE 3 Comparison between the pseudo steady-state (PSS) signal vs flip angle θ (neglecting relaxation) for (i) Equation (19b) where $\mathbf{M}_{\mathbf{i}}$ is along x, (ii) Equation (24b) with $\theta_{1}=\theta / 2+90^{\circ}$, and (iii) Equation (27) with $\mathbf{M}_{\mathbf{A}}=\mathbf{M}_{\text {Amax }}$

FIGURE 4 Optimized flip angles θ_{1} to $\theta_{\text {L }}$ vs θ, the flip angle of the train. $\theta_{1}-\theta_{\mathrm{L}}$ for each given θ are marked by crosses at the intersections with the vertical θ line. Note the increase of L when θ decreases
exactly as in Appendix C to calculate the signal amplitude vs \mathfrak{I} (slice profile). The overall echo amplitude is the sum of the signal over all the excited off-resonance values \mathfrak{I}.

3 | IMPLEMENTATION FOR SEQUENCES WITH A GIVEN M_{I}

In this section, we apply the vector model from the previous section and calculate the magnetization and echo for sequences with a given initial magnetization $\mathbf{M}_{\mathbf{i}}$ and N periodic operators. We neglect relaxation and assume a

FIGURE 5 Comparison between $M_{x}(\phi)$ and $M_{z}(\phi)$ after the first L pulses with flip angles from Figure 4, with the theoretical $\mathbf{M}_{\text {Amax }}$ in (11b) vs ϕ. The calculated M_{x} and M_{z} are plotted as blue and magenta circles, respectively. The theoretical M_{x} and M_{z} from (11b) are plotted as full red and full green lines, respectively. The flip angles θ used are 25° (top Figure) and 90° (bottom Figure)
constant flip angle, so the analytic solution of Appendix A can be used to find $\mathbf{M}^{(\mathbf{n})}$ and echo signal for $n=1$ to N.

As shown in (A5), $\mathbf{M}^{(\mathbf{n})}$ consists of a pseudo steadystate term $\mathbf{M}_{\mathbf{A}}$ and an oscillatory term $\mathbf{M}_{\mathbf{P}}^{(\mathbf{n})}$. Since only $\mathbf{M}_{\mathbf{A}}$ gives a useful signal, it is useful to calculate the Fourier coefficients of $\mathbf{M}_{\mathbf{A}}$ using (15) and (16):

$$
\begin{align*}
\mathcal{A}_{k}^{(n)} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} M_{A, x y}^{(n)}(\phi) e^{-i \phi k} d \phi \\
\mathcal{B}_{k}^{(n)} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} M_{A, z}^{(n)}(\phi) e^{-i \phi k} d \phi \tag{17a}
\end{align*}
$$

where $M_{A, x y}^{(n)}$ and $M_{A, z}^{(n)}$ in (17a) are the $x-y$ and z magnetization of $\mathbf{M}_{\mathbf{A}}$ after the nth RF pulse. Since the echo signal is the zero Fourier coefficient $A_{0}^{(n)}$ of $\mathbf{M}^{(\mathbf{n})}$ (Equation (15b)) and $\mathbf{M}^{(\mathbf{n})}=\mathbf{M}_{\mathbf{A}}+\mathbf{M}_{\mathbf{P}}^{(\mathbf{n})}$ (Equation (A5)):

$$
\begin{align*}
\operatorname{Echo}(n)= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} M_{x y}^{(n)}(\phi) d \phi=\mathcal{A}_{0}^{(n)}+ \\
& \frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathbf{M}_{P, x y}^{(n)}(\phi) d \phi \equiv \mathcal{A}_{0}+\mathbf{I}^{(\mathbf{n})} \tag{17b}
\end{align*}
$$

where $\boldsymbol{M}_{P, x y}^{(n)}$ is the $x-y$ component of $\mathbf{M}_{\mathbf{P}}^{(\mathbf{n})}$. The integral $\boldsymbol{I}^{(\boldsymbol{n})}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \boldsymbol{M}_{\mathrm{P}, \boldsymbol{x y}}^{(\boldsymbol{n})}(\phi) d \phi$ in (17b) is calculated by computing $\mathbf{M}_{\mathbf{P}}^{(\mathbf{n})}$ using $\mathbf{R}^{(\mathbf{n})}$ in (A2) and integrating over ϕ as shown below. The echo is a sum of a constant term \mathcal{A}_{0} and a n-dependent term $\boldsymbol{I}^{(\boldsymbol{n})}$.

$3.1 \mid M_{i}$ along the \boldsymbol{x}-axis

$\mathbf{R}_{\text {prep }}$ is a 90° RF pulse in $-y$, so $\mathbf{M}_{\mathbf{i}}$ is along the x-axis as in a standard RARE sequence. From (10), the pseudo steady-state magnetization $\mathbf{M}_{\mathbf{A}}$ is

$$
\begin{equation*}
M_{A x}=\frac{1}{1+\lambda^{2}} ; \quad M_{A y}=0 ; \quad M_{A z}=\frac{\lambda}{1+\lambda^{2}} . \tag{18a}
\end{equation*}
$$

The perpendicular rotating component $\mathbf{M}_{\mathbf{P}}$ is:

$$
\begin{equation*}
M_{P x}=\frac{\lambda^{2}}{1+\lambda^{2}} ; \quad M_{P y}=0 ; \quad M_{P z}=\frac{-\lambda}{1+\lambda^{2}} \tag{18b}
\end{equation*}
$$

$M_{A x}$ is both symmetric and pi-symmetric in ϕ. Using Appendix B and Equation (17a), the Fourier coefficients of $\mathbf{M}_{\mathbf{A}}$ in Equation (18a) are:
$\mathcal{A}_{2 n}=\mathcal{A}_{-2 n}=\frac{1}{\pi} \int_{0}^{\pi} \frac{\cos (2 n x)}{1+\lambda^{2}} d x \quad$ where $n=0,1,2, \ldots$

Using the online integration calculator ${ }^{20}$, we find that

$$
\begin{equation*}
\mathcal{A}_{0}=\frac{1}{\sqrt{\frac{C^{2}}{S^{2}}+1}}=S ; \quad \mathcal{A}_{2}=\mathcal{A}_{-2}=\frac{S+S^{3}-2 S^{2}}{C^{2}} . \tag{19b}
\end{equation*}
$$

$M_{A z}$ in (18a) is antisymmetric and pi-antisymmetric in ϕ. Therefore, the Fourier coefficients of $M_{A z}$ are:

$$
\begin{equation*}
\mathcal{B}_{n}=-\mathcal{B}_{-n}=\frac{-i}{\pi} \int_{0}^{\pi} \frac{\lambda \cdot \sin (n x)}{1+\lambda^{2}} d x \quad n=1,3,5, \ldots \tag{19c}
\end{equation*}
$$

Using an integration calculator ${ }^{20}$

$$
\begin{equation*}
\mathcal{B}_{1}=-\mathcal{B}_{-1}=-i \frac{S-S^{2}}{C} \tag{19d}
\end{equation*}
$$

\mathcal{A}_{0} in (19b) was originally obtained by Alsop. ${ }^{13}$
The integral $\boldsymbol{I}^{(\boldsymbol{n})}$ for $\mathbf{M}_{\mathbf{i}}$ in x and phase error ξ is calculated by Equations (31-35) below. Therefore, the echo here is equal to Equation (34) with $\xi=0$, and $\boldsymbol{I}^{(n)}$ is equal to I_{1} in Equation (35a) and Figure 8. From (17b):

$$
\begin{align*}
\operatorname{Echo}(n)= & \mathcal{A}_{0}+\boldsymbol{I}^{(n)}=\mathcal{A}_{0}+I_{1}=S+ \\
& \frac{1}{\pi} \int_{0}^{\pi} \frac{\lambda^{2}}{1+\lambda^{2}} \cdot \exp (\text { in } \psi) d \phi \tag{20}
\end{align*}
$$

where $\exp ($ in $\psi)$ in (20) is given by Equation (9b).
Lukzen et al ${ }^{14,15}$ provides an analytic approximation that converges to the exact solution (20) for $n \gtrsim 8$.

3.2 | Multi-echo sequence with a different first flip angle

Hennig and Scheffler ${ }^{21}$ showed that using a larger first flip angle $\theta_{1}=90^{\circ}+\theta / 2$ it is possible to increase the signal of the pseudo steady-state echo \mathcal{A}_{0}. We shall analyze this and provide analytic expressions.

The prep operator is the 90_{-y}° excitation followed by the first periodic operator with flip angle $\theta_{1} . \mathbf{M}_{\mathbf{i}}$ is the magnetization at the beginning of the second periodic operator. Using (2) and (5)

$$
\begin{align*}
M_{i x}= & 1-2 C_{0}^{2} \cdot \sin ^{2}(\phi) ; \quad M_{i y}=-2 C_{0}^{2} \cdot \sin (\phi) \cos (\phi) \\
& M_{i z}=2 C_{0} S_{0} \cdot \sin (\phi) \tag{21}
\end{align*}
$$

Where $C_{0} \equiv \cos \left(\frac{\theta_{1}}{2}\right)$ and $S_{0} \equiv \sin \left(\frac{\theta_{1}}{2}\right) . \mathbf{M}_{\mathbf{A}}$ is computed by substitution of (21) into Equation (10):

$$
\begin{align*}
M_{A x}= & \frac{1-2 C_{0}^{2} \sin ^{2}(\phi)+2 C_{0} S_{0} \sin ^{2}(\phi) \cdot \frac{C}{S}}{1+\frac{C^{2}}{S^{2}} \sin ^{2}(\phi)} ; \tag{22}\\
& M_{A z}=\frac{C}{S} \sin (\phi) \cdot M_{A x}
\end{align*}
$$

where $M_{A x}$ and $M_{A z}$ are the x and z components of $\mathbf{M}_{\mathbf{A}}$. To find θ_{1} that maximizes $M_{A x}$, we calculate $\frac{\mathrm{d} M_{A X}}{\mathrm{~d} \theta_{1}}=0$. The result is

FIGURE 6 A, Comparison between optimized RARE sequences (the first L flip angles are taken from Figure 4 and Table 1 and the first L echoes are divided by $R(m)$ in Equation (30)) to constant flip sequences. The RF pulses are nonselective and $T_{1}=T_{2}=\infty$. (1) Optimized with $\theta=60^{\circ}$. (2) Constant flip with $\theta=60^{\circ}$. (3) Optimized with $\theta=25^{\circ}$. (4) Constant flip. $\theta=25^{\circ}$. B, Comparison between optimized RARE sequences (flip angles and echo compensation) to constant flip sequences for $T_{1} / T_{2}=1000 / 100 \mathrm{~ms}$ with echo spacing of 5 ms .
The RF pulses are slice-selective SLR linear phase. (1) Optimized with $\theta=60^{\circ}$. (2) Constant flip with $\theta=60^{\circ}$. (3) Optimized. $\theta=25^{\circ}$. (4) Constant flip. $\theta=25^{\circ}$

$$
\begin{equation*}
\cos \left(\theta_{1}\right) \cdot \frac{C}{S}=-\sin \left(\theta_{1}\right) \quad=>\quad \theta_{1}=\frac{\theta}{2}+90^{\circ} . \tag{23}
\end{equation*}
$$

The optimal first flip angle that maximizes $\mathbf{M}_{\mathbf{A}}$ is independent of ϕ and depends only on θ. Since $M_{A x}$ is symmetric and pi-symmetric and $M_{A z}$ is antisymmetric and piantisymmetric, its Fourier coefficients are given by Equations (19a) and (19c) with $M_{A x}$ and $M_{A z}$ in (18) replaced by (22). Using integral calculator ${ }^{20}$, we find:

$$
\begin{equation*}
\mathcal{A}_{0}=S+\left(2 C_{0} S_{0} \frac{C}{S}-2 C_{0}^{2}\right) \cdot \frac{S^{2}-S^{3}}{C^{2}} . \tag{24a}
\end{equation*}
$$

If $\theta_{1}=\frac{\theta}{2}+90^{\circ}$, Equation (24a) simplifies to

FIGURE 7 A, RF flip angles of a train with 40 pulses and echo spacing of 5 ms . The first $L=4$ pulses sets the magnetization to $\mathbf{M}_{\text {Amax }}$ for $\theta=60^{\circ}$. Increasing the flip angles to 140° toward the end reduces signal decay and image blurring. B, Signal with T_{1} / T_{2} of 1000/ 100 ms and echo space of 5 ms with flip angles from Figure 7A. The signal with constant flip angle of 60° is shown in Figure 6B at graph (1). The signal in this Figure decays less than in Figure 6B graph (1)

$$
\begin{equation*}
\mathcal{A}_{0}=S+\frac{S \cdot(1-S)}{1+S} \tag{24b}
\end{equation*}
$$

\mathcal{A}_{0} in (24b) is larger by $S(1-S) /(1+S)$ from (19b).
The first echo of this sequence is acquired at the end of the first periodic operator with flip angle θ_{1}, where the magnetization is $\mathbf{M}_{\mathbf{i}}$ (Equation (21)) and the echo amplitude is:

$$
\text { echo } \begin{align*}
1 & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(M_{i x}+i M_{i y}\right) d \phi \\
& =1-\frac{2 C_{0}^{2}}{2 \pi} \int_{-\pi}^{\pi} \sin ^{2}(\phi) d \phi \tag{25}\\
& =1-C_{0}^{2}=S_{0}^{2} .
\end{align*}
$$

FIGURE 8 The integral I_{1} (Equation (35a); top Figure) and I_{2} (Equation (35b); bottom Figure) for $n=1-120$ RF pulses. Flip angle $=80^{\circ}$

The amplitudes of the echoes from the second to the last are given by (17b):

$$
\begin{equation*}
\operatorname{Echo}(n)=\mathcal{A}_{0}+\boldsymbol{I}^{(n)} \tag{26}
\end{equation*}
$$

$\mathbf{I}^{(\mathbf{n})}$ is calculated in Appendix D using the matrix $\mathbf{R}^{(\mathbf{n})}$ in Equation (A2). It is a sum of 2 integrals in Equation (D6). These integrals do not have an analytic solution, but can be easily calculated by numerical integration. Note that the echo with $n=1$ in (26) is the second acquired echo, and the amplitude of the first echo is given by (25). The echo amplitudes of the Hennig-Scheffler sequence for $\theta=90^{\circ}$ and 120° are plotted in Figure 5 in reference. ${ }^{21}$

3.3 | Multi-echo sequence with optimized initial magnetization $\mathbf{M}_{\mathbf{i}}$

To maximize $\mathbf{M}_{\mathbf{A}}$ and minimize $\mathbf{M}_{\mathbf{P}}$, we must align the initial magnetization $\mathbf{M}_{\mathbf{i}}$ as close as possible to $\mathbf{V}_{\mathbf{A}}$. If $\mathbf{M}_{\mathbf{i}}$ and $\mathbf{V}_{\mathbf{A}}$ are aligned for all ϕ, maximum pseudo steady-state $\mathbf{M}_{\text {Amax }}$ (Equation (11b)) is obtained, and the echo signal is

$$
\begin{equation*}
E_{\mathrm{PSS}}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{d \phi}{\sqrt{1+\lambda^{2}}}=\frac{1}{\pi} \int_{0}^{\pi} \frac{d \phi}{\sqrt{1+\lambda^{2}}} \tag{27}
\end{equation*}
$$

A similar result is given by Alsop (see Figure 1 and equation (8) in reference (13)). This integral can be easily evaluated numerically, but has no simple analytic solution. E_{PSS} in (27) is the highest possible signal for a given θ as shown by Figure 3, which compares the pseudo steadystate echo signal of Equation (19b), where $\mathbf{M}_{\mathbf{i}}$ is along x, Equation (24b) with $\theta_{1}=\frac{\theta}{2}+90^{\circ}$ and Equation (27) with maximum pseudo steady-state $\mathbf{M}_{\text {Amax }}$ vs θ.

To align $\mathbf{M}_{\mathbf{i}}$ with $\mathbf{V}_{\mathbf{A}}$ for all ϕ, we vary the flip angles θ_{1} to θ_{L} of the first L RF pulses, such that $\mathbf{R}_{\mathbf{p r e p}}$ consists of L RF pulses. The 2×2 unitary matrix of $\mathbf{R}_{\text {prep }}$ is:

$$
\text { Rprep }=\prod_{k=1}^{L}\left(\begin{array}{cc}
C_{k} z & i S_{k} \tag{28}\\
i S_{k} & C_{k} z^{-1}
\end{array}\right) \cdot R(-90)_{y}
$$

Where S_{k}, C_{k} is $\sin \left(\theta_{k} / 2\right)$ and $\cos \left(\theta_{k} / 2\right)$, respectively, $k=1-L . \quad \boldsymbol{M}_{i}=\left[M_{i x}, M_{i y}, M_{i z}\right]^{T}$ is calculated from $R_{\text {prep }}$ using (5) and $R_{M A}=\frac{\left|\boldsymbol{M}_{A}\right|}{\left|\boldsymbol{M}_{\text {Amax }}\right|}$ is computed using (11c). The optimal flip angles θ_{1} to θ_{L} are obtained when R_{MA} is as close as possible to 1 . Since R_{MA} depends on ϕ, the optimization minimizes

$$
\begin{equation*}
\delta \equiv 1-\frac{1}{2 \pi} \int_{-\pi}^{\pi} R_{M A}(\phi) d \phi \tag{29}
\end{equation*}
$$

$\delta \approx 0$ implies that $\mathbf{M}_{\mathbf{i}}$ is aligned with $\mathbf{V}_{\mathbf{A}}$ and $\mathbf{M}_{\mathbf{P}}$ is close to zero for all $\phi . \theta_{1}$ to θ_{L} that minimize δ are computed with the Nelder-Mead minimization algorithm (MATLAB "fminsearch" and reference (22)). For all flip angles $180^{\circ} \geq \theta \geq 20^{\circ}$, the minimization converges within a few iterations. The number L of pulses required to reduce δ below a given threshold vary with flip angle, where for large flip angles $\left(\theta \geq 110^{\circ}\right) L=2$ pulses and for low flip angles $\left(\theta \leq 25^{\circ}\right) L=6$. The minimization of δ is carried out for each θ, and a table of optimal flip angles vs θ is created. The (arbitrary) threshold of δ is set to 1%, ie, $\delta \leq 0.01$ for all θ. We have segmented the flip angles into 5 segments with different L in each segment. Table 1 lists the flip angles range, L and maximum δ, referred to as δ max, in each segment. $\delta_{\max }$ and L are larger for lower flip angles. The small $\delta_{\max }$ in the table indicates that R_{MA} is close to 1 and maximum pseudo steady-state is obtained for all ϕ and θ. The table of optimized flip angles θ_{1} to θ_{L} vs θ is shown in Figure 4. This table needs to be calculated only once. For any user-selected θ, the optimal set of flip angles is picked from the table.

To verify that $M_{x}(\phi)$ and $M_{z}(\phi)$ after the first L pulses are fully aligned with $\mathbf{M}_{\text {Amax }}$, we calculated $M_{x}(\phi)$ and $M_{z}(\phi)$ for all θ and ϕ after L pulses using the flip angles θ_{1} to θ_{L} from Figure 4, and compared them to the theoretical

TABLE 1 Flip angle ranges, number of pulses L, and maximum δ in each segment

	Range of flip angles (degrees) in each segment	Number of pulses, \boldsymbol{L}	$\boldsymbol{\delta}_{\text {max }}$
Segment	6	0.0036	
1	$20-30$	5	0.0020
2	$31-40$	4	0.0006
3	$41-75$	3	2.5×10^{-4}
4	$76-110$	2	1.1×10^{-4}
5	$111-180$		

result in Equation (11b). The comparison showed very good agreement for all ϕ and θ. Figure 5 shows calculated $M_{x}(\phi)$ and $M_{z}(\phi)$ for $\phi=0^{\circ}-360^{\circ}$ and flip angles $\theta=25^{\circ}$ and 90° together with the theoretical $\mathbf{M}_{\text {Amax }}$ in Equation (11b).

Figure 4 shows that θ_{1} to θ_{L} are much higher than the corresponding flip angle θ of the pulse train. Therefore, echoes 1 to L are much higher than echo $L+1$ to the end of the train, and must be compensated to ensure equal amplitudes for all echoes from 1 to the end of the train. This is done by calculating the ratio $R(m)$ between echo m ($m=1-L$) to $E_{\text {PSS }}$, because the amplitude of the echoes from $L+1$ to the end is E_{PSS}.

$$
\begin{equation*}
R(m)=\frac{E(m)}{E_{\mathrm{PSS}}} \tag{30}
\end{equation*}
$$

$E(m)$ is the amplitude of echo m

$$
E(m)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} M_{x y}^{(m)}(\phi) d \phi
$$

$M_{x y}^{(m)}(\phi)$ is calculated from its Cayley-Klein parameters and Equation (5).
$R(m)$ vs θ is computed by Equation (30) and stored in a table (not shown). When the user selects θ, echoes 1 to L are compensated by dividing the k -space data of the first L echoes by $R(m)$ ($m=1-L$) during reconstruction.

Figure 6A compares echo amplitudes with θ_{1} to θ_{L} optimization and $R(m)$ compensation, to echo amplitudes acquired with constant flip angles and $\mathbf{M}_{\mathbf{i}}$ along x. All echoes were calculated with Equation (16c). Graphs (1) and (3) show the optimized and compensated echoes for flip angles $\theta=25^{\circ}$ and 60°. Graphs (2) and (4) show the constant flip angles echoes for $\theta=25^{\circ}$ and 60°. The RF pulses in Figure 6A are non-selective and relaxation is ignored. The echoes in graphs (1) and (3) are stable from echo 1 , which enables scanning tissues with short T_{2}. As expected, the echo amplitudes in graphs (1) and (3), where $\mathbf{M}_{\mathbf{i}} \approx \mathbf{M}_{\mathbf{A}}$, are higher than in graphs (2) and (4).

The above θ_{1} to θ_{L} optimization and echo compensation neglects relaxation and assumes that the RF pulses are
non-selective. To examine the validity of the results in a more realistic sequence, we simulated the sequence in Figure 1 with $T_{1}=1000 \mathrm{~ms}, T_{2}=100 \mathrm{~ms}$ and selective RF pulses. The excitation and refocusing pulses were linear phase Shinnar-Le Roux (SLR) ${ }^{16}$ pulses with bandwidth of 1 kHz and 1.9 kHz , respectively, and echo spacing of 5 ms . The off-resonance vector \mathfrak{I} had 160 points from -1.5 kHz to 1.5 kHz . Echo amplitudes are shown in Figure 6B for flip angles $\theta=60^{\circ}$ and 25°. Graphs (1) and (3) show optimized and compensated echo amplitudes with θ_{1} to θ_{L} taken from Figure 4 and echo compensation ratios R (m) taken from the table that we used in Figure 6A. Graphs (2) and (4) in Figure 6B show echo amplitudes with constant flip angles of $\theta=25^{\circ}$ and 60°. The echoes in graphs (1) and (3) decay smoothly from echo 1 due to relaxation, and have higher amplitudes than the echoes in graphs (2) and (4). These results show that the θ_{1} to θ_{L} flip angle optimization and echo compensation can be used successfully with slice-selective pulses and finite relaxation times.

3.4 | RF flip angles optimization from $\boldsymbol{\theta}_{\mathrm{L}}$ to the end of the echo train

As shown in the previous section, maximum pseudo steady-state magnetization $\mathrm{M}_{\text {Amax }}$ is achieved after $L \mathrm{RF}$ pulses for any θ, and $\mathbf{M}_{\mathbf{i}}$ is aligned with $\mathbf{V}_{\mathbf{A}}$. For low θ, the z component of $\mathbf{M}_{\text {Amax }}$ is larger and the x component (and the signal) is smaller. For larger θ, the z component decreases and the x component increases. This is evident from Figure 3 where the echo signal increases with flip angle. We can use this to our advantage, by setting the first L pulses to $\mathbf{M}_{\text {Amax }}$ with a low flip angle, and then increase θ gradually toward the end of the echo train, while increasing the signal. In the absence of relaxation, if $\mathbf{M}_{\mathbf{i}}$ is aligned with $\mathbf{V}_{\mathbf{A}}$ and the flip angle gradually increases, the magnetization M follows $\mathbf{V}_{\mathbf{A}}{ }^{8}$ As θ increases, $\mathbf{V}_{\mathbf{A}}$ and M remain aligned, and rotate toward the x-axis and the signal increases. If relaxation is present, the decay of the signal along the echo train due to relaxation becomes more moderate if θ increases. This is very useful because signal decay along the train broadens the point spread function which causes image blurring. Therefore, increasing the flip angle reduces image blurring.

Figure 6B shows that if the flip angle θ after the first L RF pulse is retained, there is significant signal decay along the train due to relaxation. To minimize signal decay, the flip angle gradually increases to maximize the signal toward the end of the train. Figure 7A shows the flip angles for a train with 40 pulses and echo space of 5 ms . After $L=4$ pulses, $\mathbf{M}_{\text {Amax }}$ with flip angle $\theta=60^{\circ}$ is achieved. In later RF pulses, θ increases exponentially toward 140°. The echo amplitude for a sample with $T_{1}=1000 \mathrm{~ms}$ and $T_{2}=100 \mathrm{~ms}$ is shown in Figure 7B.

The signal decay is much more moderate compared to the decay with a constant flip of 60° shown in Figure 6B graph (1). In general, the optimal flip angles to use depend on relaxation times, echo train length (ETL), the amount of signal decay that one can tolerate and the location in the train of the echo at the k-space center. Since an acceptable signal decay is subjective and depends on many parameters, there is no unique optimal set of flip angles. Optimization methods for different applications are found in references. ${ }^{8,23,24}$

4 ANALYSIS AND CORRECTION OF PHASE ERRORS

In this section, we shall calculate the signals in case the initial magnetization $\mathbf{M}_{\mathbf{i}}$, which is assumed to be on the x axis, is phase-shifted from the x-axis toward the y-axis by system imperfections, and then show how to correct it. Phase shifts of $\mathbf{M}_{\mathbf{i}}$ toward the y-axis are caused by eddy currents and/or inaccurate gradient pulses. They increase significantly at off-center locations ${ }^{25}$ or after strong gradient pulses in diffusion weighted sequences. ${ }^{26}$ To simplify the analysis, we ignore relaxation and assume a constant flip angle.
$\mathbf{M}_{\mathbf{A}}$ is in the $x-z$ plane, so the y component of $\mathbf{M}_{\mathbf{i}}$ is perpendicular to $\mathbf{M}_{\mathbf{A}}$ and oscillates in a plane perpendicular to $\mathbf{M}_{\mathbf{A}}$, which causes artifacts. Suppose the initial magnetization $\mathbf{M}_{\mathbf{i}}$ after the 90_{-y}° excitation pulse is phase-shifted due to system imperfections by ξ radians:

$$
\mathbf{M}_{\mathbf{i}}=M_{i}(\cos \xi \cdot \hat{x}+\sin \xi \cdot \hat{y})
$$

Where \hat{x} and \hat{y} are unit vectors along x and y. For long TR scans, $M_{i}=M_{0}=1$. We substitute $\mathbf{M}_{\mathbf{i}}$ into Equation (10), to find the rotating magnetization $\mathbf{M}_{\mathbf{p}}$:

$$
\begin{equation*}
M_{p x}=\frac{\lambda^{2}}{1+\lambda^{2}} M_{i x} ; \quad M_{p y}=M_{i y} ; \quad M_{p z}=\frac{-\lambda}{1+\lambda^{2}} M_{i x} \tag{31a}
\end{equation*}
$$

where $M_{i x}=M_{i} \cos \xi$ and $M_{i y}=M_{i} \sin \xi$.
The pseudo steady-state magnetization $\mathbf{M}_{\mathbf{A}}$ is

$$
\begin{equation*}
M_{A x}=\frac{M_{i} \cos \xi}{1+\lambda^{2}} ; \quad M_{A z}=\lambda M_{A x} \tag{31b}
\end{equation*}
$$

The magnetization $\mathbf{M}^{(\mathbf{n})}$ after n RF pulses is calculated with the matrix $\mathbf{R}^{(\mathbf{n})}$ in (A2). $\mathbf{M}_{\mathbf{A}}$ is not affected by $\mathbf{R}^{(\mathbf{n})}$, and $\mathbf{M}_{\mathbf{P}}^{(\mathbf{n})}$ in Equation (A5) is obtained by multiplying $\mathbf{R}^{(\mathbf{n})}$ by $\boldsymbol{M}_{\boldsymbol{P}}=\left[M_{p x}, M_{p y}, M_{p z}\right]^{T}$. The echo is computed by integrating $M^{(n)}=M_{A}+M_{P}^{(n)}$ over ϕ from $-\pi$ to π. From (A2) and (31), we calculate the contribution of $\mathbf{M}_{\mathbf{P}}$ to the echo:

$$
\begin{align*}
\operatorname{Re}(\text { echo })_{M P}= & \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[\left(c_{1} c_{2}^{2}+s_{2}^{2}\right) \cdot M_{p x}+c_{2} s_{2}\left(1-c_{1}\right) \cdot M_{p z}\right] d \phi \\
& +\frac{M_{i y}}{2 \pi} \cdot \int_{-\pi}^{\pi} c_{2} s_{1} d \phi \tag{32a}
\end{align*}
$$

$$
\operatorname{Im}(\text { echo })_{M P}=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} c_{2} s_{1} \cdot M_{p x} d \phi+\frac{1}{2 \pi} \int_{-\pi}^{\pi} s_{1} s_{2} \cdot M_{p z} d \phi
$$

$$
\begin{equation*}
+\frac{M_{i y}}{2 \pi} \cdot \int_{-\pi}^{\pi} c_{1} d \phi \tag{32b}
\end{equation*}
$$

$s_{2}=\sin \left(\delta_{1}\right)$ and $c_{2}=\cos \left(\delta_{1}\right)$ are given by (A1a) and (A1b); $c_{1}=\cos (n \psi)$ and $s_{1}=\sin (n \psi)$ are given by (A3). The right term of (32a) vanishes because ψ and s_{1} is symmetric in ϕ (Equation (9)) and c_{2} is antisymmetric (Equation (A1b)). The left term in (32b) vanishes because $c_{2} s_{1}$ is antisymmetric in ϕ and $M_{p x}$ is symmetric (Equation (31a)). The middle term in (32b) vanishes because $s_{1} s_{2}$ is symmetric and $M_{p z}$ antisymmetric. The right term in (32b) is nonzero because c_{1} is symmetric in ϕ. The full echo is obtained by adding the integral over ϕ of M_{A} (Equation (31b)) to Equation (32). Assuming $M_{i}=1$:
$\operatorname{Re}(\text { echo })_{M A}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} M_{A x} d \phi=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\cos \xi}{1+\lambda^{2}} d \phi=S \cdot \cos \xi$.

The final echo is a sum of (32) and (33):

$$
\begin{equation*}
\text { Echo }=\left(I_{1}+S\right) \cdot \cos \xi+i I_{2} \cdot \sin \xi \tag{34}
\end{equation*}
$$

where I_{1} is given by:
$I_{1}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[\left(c_{1} c_{2}^{2}+s_{2}^{2}\right) \cdot \frac{\lambda^{2}}{1+\lambda^{2}}-c_{2} s_{2}\left(1-c_{1}\right) \cdot \frac{\lambda}{1+\lambda^{2}}\right] d \phi$
and I_{2} is

$$
I_{2}=\frac{1}{2 \pi} \cdot \int_{-\pi}^{\pi} c_{1} d \phi
$$

$\underset{\frac{\lambda}{\sqrt{1+\lambda^{2}}} \text { into } I_{1}:}{\operatorname{substituting}} \quad s_{2}=\sin \left(\delta_{1}\right)=\frac{1}{\sqrt{1+\lambda^{2}}}$, and $c_{2}=\cos \left(\delta_{1}\right)=$ $\frac{\lambda}{\sqrt{1+\lambda^{2}}}$ into I_{1} :
$I_{1}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\lambda^{2}}{1+\lambda^{2}} \cdot \cos (n \psi) d \phi=\frac{1}{\pi} \int_{0}^{\pi} \frac{\lambda^{2}}{1+\lambda^{2}} \cdot \exp ($ in $\psi) d \phi$ $I_{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} c_{1} d \phi=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos (n \psi) d \phi=\frac{1}{\pi} \int_{0}^{\pi} \exp ($ in $\psi) d \phi$.

Both I_{1} and I_{2} have no simple analytic expression, but can be easily evaluated numerically. Figure 8 shows I_{1} and I_{2} for $n=1-120 \mathrm{RF}$ pulses and flip angle $\theta=80^{\circ}$. As expected I_{1} oscillates, but decays to zero after a few pulses, while I_{2} oscillations persist even after 120 pulses. Equation
(35) shows that the oscillations of I_{1} are caused by the rotation of M_{px} in (31a) by $n \psi$ radians, and the oscillations of I_{2} are caused by the rotation of $M_{\mathrm{py}}=M_{\mathrm{iy}}$ in (31a) by $n \psi$ radians.

In summary, the phase error ξ generates artifacts because (i) the imaginary part of the echo in (34) is oscillatory and (ii) the real part of the echo ("good" signal) amplitude decreases by $\cos \xi$. To eliminate the oscillatory part one can null the imaginary part of the echo, but this cannot be done in practice due to an unknown instrumenta-tion-dependent receiver phase.

To recover the original signal S, we use another excitation where the phase of the excitation RF pulse is shifted by 90° such that $\xi \rightarrow \xi+90^{\circ}$. The echo signals E_{1} and E_{2} from these 2 excitations are given by

$$
\begin{align*}
E_{1} & =\left(I_{1}+S\right) \cdot \cos \xi+i I_{2} \cdot \sin \xi \tag{36}\\
E_{2} & =-\left(I_{1}+S\right) \cdot \sin \xi+i I_{2} \cos \xi
\end{align*}
$$

E_{1} and E_{2} are combined by adding and subtracting E_{1} and $-i \mathrm{E}_{2}$ to yield the even and odd echoes $E_{\text {even }}$ and $E_{\text {odd }}{ }^{9}$:

$$
\begin{align*}
& E_{\text {even }}=\frac{E_{1}+\left(-i E_{2}\right)}{2}=\frac{I_{1}+S+I_{2}}{2} \exp (i \xi) ; \tag{37}\\
& E_{\text {odd }}=\frac{E_{1}-\left(-i E_{2}\right)}{2}=\frac{I_{1}+S-I_{2}}{2} \exp (-i \xi) .
\end{align*}
$$

The phase difference 2ξ between $E_{\text {even }}$ and $E_{\text {odd }}$ is used to recover the signal $S=\sin (\theta / 2)$ and eliminate I_{2} :

$$
\begin{equation*}
I_{1}+S=\left|E_{\text {even }}+\exp (i 2 \xi) \cdot E_{\text {odd }}\right| \tag{38}
\end{equation*}
$$

The full reconstruction algorithm is described in, ${ }^{25}$ where the phase 2ξ is derived from a low resolution version of $E_{\text {even }}$ and $E_{\text {odd }}$. The phases of the RF pulses in the 2 excitations are not unique, ${ }^{9}$ but Equation (36) is the simplest to implement.

REFERENCES

1. Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR. Magn Reson Med. 1986;3: 823-833.
2. Woessner DE. Effects of diffusion in nuclear magnetic resonance spin-echo experiments. J Chem Phys. 1961;34:2057-2061.
3. Hennig J. Multiecho imaging sequences with low refocusing flip angles. J Magn Reson. 1988;78:397-407.
4. Hennig J. Echoes - how to generate, recognize use or avoid them in MR imaging sequences. Concepts Magn Reson. 1991;3:125143.
5. Hennig J, Weigel M, Scheffler K. Calculation of flip angles for echo trains with predefined amplitudes with the extended phase graph (EPG) algorithm: principles and applications to Hyperechoes and Traps sequences. Magn Reson Med. 2004;51:68-80.
6. Weigel M. Extended phase graphs: dephasing, RF pulses, and echoes - pure and simple. J Magn Reson Imaging. 2015;41:266295.
7. Zur Y. Algorithm to calculate the NMR signal of a multi spinecho sequence with relaxation and spin-diffusion. J Magn Reson. 2004;171:97-106.
8. Hennig J, Weigel M, Scheffler K. Multi-echo sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med. 2003;49:527-535.
9. Zur Y, Stokar S. A phase-cycling technique for canceling spurious echoes in NMR Imaging. J Magn Reson. 1987;71:212228.
10. Le Roux P, Hinks RS. Stabilization of Echo Amplitudes in FSE Sequences. Magn Reson Med. 1993;30:183-191.
11. Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94:630.
12. Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Inst. 1958;29:688-691.
13. Alsop DC. The sensitivity of low flip angle RARE imaging. Magn Reson Med. 1997;37:176-184.
14. Lukzen NN, Savelov AA. Analytical derivation of multiple spin echo amplitudes with arbitrary refocusing angle. J Magn Reson. 2007;185:71-76.
15. Lukzen NN, Petrova MV, Koptyug IV, Savelov AA, Sagdeev RZ. The generating functions formalism for the analysis of spin response to the periodic trains of RF pulses. Echo sequences with arbitrary refocusing angles and resonance offsets. J Magn Reson. 2009;196:164-169.
16. Pauly J, Le Roux P, Nishimura D, Macovski A. Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm. IEEE Trans Med Imaging. 1991;10:53-65.
17. Boas MA. Mathematical Methods in the Physical Sciences. New York, NY, USA: John Wiley \& Sons; second edition; 1983.
18. Oppenheim AV, Schafer RW. Discrete-Time Signal Processing. Englewood Cliffs, NJ, USA: Prentice Hall; 1989.
19. Strang G. Introduction to Linear Algebra, 4th edn. Wellesley, MA, USA- Cambridge Press; 2009.
20. Scherfgen D. Online Integral calculator. http://www.integral-calc ulator.com; 2016.
21. Hennig J, Scheffler K. Easy improvement in signal to noise in RARE sequences with low refocusing flip angles. Magn Reson Med. 2000;44:983-985.
22. Press WH, Teukolsky SA, Veterling WT, Flannery BP. Numerical Recipes, 3rd edn. Cambridge, UK: Cambridge University Press; 2007:502-507.
23. Busse RF, Brau ACS, Vu A, Michelich CR, Bayram E, Kijovski R, et al. Effects of refocusing flip angle modulation and view ordering in 3D Fast Spin Echo. Magn Reson Med. 2008;60:640-649.
24. Mugler JP, Kiefer B, Brookeman JR. Three-dimensional T2weighted imaging of the brain using very long spin-echo trains. Proc. 8th Annual Meeting of the ISMRM, Denver, CO, USA; 2000. Abstract 687.
25. Zur Y, Chen W. A technique to eliminate artifacts in 3D fast spin echo imaging. Proc. Annual Meeting of the ISMRM, Milan, Italy; 2014. Abstract 1648.
26. Alsop DC. Phase insensitive preparation of single-shot rare: application to diffusion imaging in humans. Magn Reson Med. 1997;38:527-533.
27. Kingsley PB. Introduction to diffusion tensor imaging mathematics: part I. Tensors, rotations, and eigenvectors. Concepts Magn Reson Part A 2006;28A:101-122.

How to cite this article: Zur Y. Analysis of the multi-echo spin-echo pulse sequence. Concepts Magn Reson Part A. 2017;46A:e21402. https://doi.org/ 10.1002/cmr.a. 21402

APPENDIX A

ANALYTIC EXPRESSION FOR M AFTER n RF PULSES

We derive an analytic expression for the magnetization $\mathbf{M}^{(\mathbf{n})}$ after n pulses with equal flip angles θ.

As shown in Figure 2, the angle between $\mathbf{V}_{\mathbf{A}}$ (Equation (7)) and the z-axis is $\delta_{1}=90^{\circ}-\operatorname{angle}(1, \lambda)$, and between $\mathbf{V}_{\mathbf{A}}$ and the x-axis angle $(1, \lambda)$. The first step in the calculation is the rotation of $\mathbf{M}_{\mathbf{P}}$ and $\mathbf{M}_{\mathbf{A}}$ clockwise around the y-axis by δ_{1} radians (y points into the page), to $\operatorname{align} \mathbf{M}_{\mathbf{A}}$ (and $\mathbf{V}_{\mathbf{A}}$) with the z-axis and $\mathbf{M}_{\mathbf{P}}$ with the x-axis. From Figure 2:

$$
\begin{equation*}
\sin \left(\delta_{1}\right)=\sin \left[90^{\circ}-\operatorname{angle}(1, \lambda)\right]=\frac{1}{\sqrt{1+\lambda^{2}}} \tag{A1a}
\end{equation*}
$$

$$
\begin{equation*}
\cos \left(\delta_{1}\right)=\sin [\operatorname{angle}(1, \lambda)]=\frac{\lambda}{\sqrt{1+\lambda^{2}}} \tag{A1b}
\end{equation*}
$$

After n pulses, $\mathbf{M}_{\mathbf{P}}$ rotates by $n \psi$ radians in the clockwise direction around the z-axis which is aligned with $\mathbf{V}_{\mathbf{A}}$. The full rotation operator $\mathbf{R}^{(\mathbf{n})}$ of $\mathbf{M}_{\mathbf{P}}$ by the n RF pulses is a product of 3 rotation matrices: (i) a clockwise rotation, \mathbf{R} $\left(\delta_{1}\right)_{y}$, of $\mathbf{V}_{\mathbf{A}}$ by δ_{1} degrees around y to align $\mathbf{V}_{\mathbf{A}}$ with the z axis; (ii) a clockwise rotation $\mathbf{R}(n \psi)_{z}$ of M_{P} by $n \psi$ radians around the z-axis; (iii) a rotation $\mathbf{R}\left(-\delta_{1}\right)_{y}$ by $-\delta_{1}$ around y to restore $\mathbf{V}_{\mathbf{A}}$ back to its original position.

$$
\begin{align*}
\boldsymbol{R}^{(\boldsymbol{n})} & =\boldsymbol{R}\left(-\delta_{1}\right)_{y} \cdot \boldsymbol{R}(n \psi)_{z} \cdot \boldsymbol{R}\left(\delta_{1}\right)_{y} \\
& =\left(\begin{array}{ccc}
c_{1} c_{2}^{2}+s_{2}^{2} & c_{2} s_{1} & c_{2} s_{2}\left(1-c_{1}\right) \\
-c_{2} s_{1} & c_{1} & s_{1} s_{2} \\
c_{2} s_{2}\left(1-c_{1}\right) & -s_{1} s_{2} & c_{1} s_{2}^{2}+c_{2}^{2}
\end{array}\right) \tag{A2}
\end{align*}
$$

where $s_{2} \equiv \sin \left(\delta_{1}\right)$ and $c_{2} \equiv \cos \left(\delta_{1}\right)$ are given by (A1) and $c_{1} \equiv \cos (n \psi), s_{1} \equiv \sin (n \psi)$. From Equation (9b),

$$
\begin{align*}
\exp (i n \psi) & =\cos (n \psi)+i \sin (n \psi)=\left[\exp \left(i \frac{\psi}{2}\right)\right]^{2 n} \tag{A3}\\
& =\left[C \cos (\phi)+i S \sqrt{1+\lambda^{2}}\right]^{2 n}
\end{align*}
$$

From (A3), $\quad c_{1}=\cos (n \psi)=\operatorname{real}[\exp (i n \psi)] \quad$ and $s_{1}=\sin (n \psi)=\operatorname{imag}[\exp (\operatorname{in} \psi)]$.

The clockwise rotation matrices in (A2) are ${ }^{27}$:

$$
\begin{align*}
\boldsymbol{R}\left(\delta_{1}\right)_{y} & =\left(\begin{array}{ccc}
\cos \left(\delta_{1}\right) & 0 & -\sin \left(\delta_{1}\right) \\
0 & 1 & 0 \\
\sin \left(\delta_{1}\right) & 0 & \cos \left(\delta_{1}\right)
\end{array}\right) \tag{A4}\\
\boldsymbol{R}(n \psi)_{z} & =\left(\begin{array}{ccc}
\cos (n \psi) & \sin (n \psi) & 0 \\
-\sin (n \psi) & \cos (n \psi) & 0 \\
0 & 0 & 1
\end{array}\right) .
\end{align*}
$$

$\mathbf{R}^{(\mathbf{n})}$ in (A2) has no effect on $\mathbf{M}_{\mathbf{A}}$, ie, $\mathbf{R}^{(\boldsymbol{n})} \boldsymbol{M}_{\boldsymbol{A}}=\boldsymbol{M}_{\boldsymbol{A}}$. The total magnetization $\mathbf{M}^{(\mathbf{n})}$ after n RF pulses is given by:

$$
\begin{equation*}
M^{(n)}=\boldsymbol{R}^{(n)} \cdot M_{i}=R^{(n)} \cdot\left(M_{A}+M_{P}\right)=M_{A}+M_{P}^{(n)} \tag{A5}
\end{equation*}
$$

Where $\boldsymbol{M}_{P}^{(n)}=\boldsymbol{R}^{(n)} \cdot \boldsymbol{M}_{P}$.
$\mathbf{M}_{\mathbf{A}}$ and $\mathbf{M}_{\mathbf{P}}$ are given by Equation (10). Computing $\mathbf{M}^{(\mathbf{n})}$ with Equations (2-5) yield identical results to Equations (A2) and (A5).

APPENDIX B

FOURIER COEFFICIENTS OF PI-SYMMETRIC AND SYMMETRIC FUNCTIONS

A function $M(x)$ defined in the range $[-\pi, \pi]$ is pi-symmetric if

$$
M(x)=M(x-\pi)
$$

Or pi-antisymmetric if

$$
M(x)=-M(x-\pi)
$$

Similar to symmetric and antisymmetric functions, any function in $[-\pi, \pi]$ can be written as a sum of a pi-symmetric function and another pi-antisymmetric function (reference (17) page 322).

The Fourier coefficient A_{n} of a function $M(x)$ defined in $[-\pi, \pi]$ is given by

$$
\begin{align*}
A_{n}= & \frac{1}{2 \pi} \int_{-\pi}^{\pi} M(x) \mathrm{e}^{-i n x} d x=\frac{1}{2 \pi} \int_{-\pi}^{0} M(x) \mathrm{e}^{-i n x} d x+ \\
& \frac{1}{2 \pi} \int_{0}^{\pi} M(x) \cdot \mathrm{e}^{-i n x} d x \equiv I_{A}+I_{B} \tag{B1}
\end{align*}
$$

In the first integral I_{A}, we substitute $x^{\prime}=x-\pi$; if M is pi-symmetric

$$
\begin{align*}
I_{A} & =\frac{1}{2 \pi} \int_{-\pi}^{0} M(x) \cdot e^{-i n x} d x=\frac{1}{2 \pi} \int_{0}^{\pi} M\left(x^{\prime}\right) \cdot e^{-i n x^{\prime}} e^{i n \pi} d x^{\prime} \\
& =I_{B} \text { for } n \text { even, }-I_{B} \text { for } n \text { odd. } \tag{B2a}
\end{align*}
$$

If M is pi-antisymmetric

$$
\begin{align*}
I_{A} & =\frac{1}{2 \pi} \int_{-\pi}^{0} M(x) \cdot e^{-i n x} d x=\frac{-1}{2 \pi} \int_{0}^{\pi} M\left(x^{\prime}\right) \cdot e^{-i n x^{\prime}} e^{i n \pi} d x^{\prime} \\
& =I_{B} \text { for } n \text { odd, }-I_{B} \text { for } n \text { even. } \tag{B2b}
\end{align*}
$$

Consequently, if M is pi-symmetric, A_{n} is $2 I_{\mathrm{B}}$ for even n and 0 for odd n. If M is pi-antisymmetric, A_{n} is $2 I_{\mathrm{B}}$ for odd n and 0 for even n. Since the echo amplitude is A_{0}, piantisymmetric M will not contribute to the echo.

A symmetric (antisymmetric) function $M_{\text {sym }}\left(M_{\text {asym }}\right)$ is defined by

$$
M_{\operatorname{sym}}(x)=M_{\operatorname{sym}}(-x) ; \quad M_{\operatorname{asym}}(x)=-M_{\operatorname{asym}}(-x)
$$

The Fourier coefficients $\left\{A_{n}\right\}_{\text {sym }}\left(\left\{A_{n}\right\}_{\text {asym }}\right)$ of a symmetric (antisymmetric) function $M_{\mathrm{S}}(x)\left(M_{\mathrm{A}}(x)\right)$ are (reference (17) chapter 7 section 9):

$$
\begin{align*}
\left\{A_{n}\right\}_{\text {sym }} & =\frac{1}{\pi} \int_{0}^{\pi} M_{\mathrm{s}}(x) \cdot \cos (n x) d x \tag{B3}\\
\left\{A_{n}\right\}_{\mathrm{asym}} & =\frac{-i}{\pi} \int_{0}^{\pi} M_{\mathrm{A}}(x) \cdot \sin (n x) d x .
\end{align*}
$$

APPENDIX C

MATLAB FUNCTION TO CALCULATE ALL FOURIER COEFFICIENTS USING EQUATION (16)

The output matrices M_{P} and M_{z} contain $A_{k}^{(n)}$ and $B_{k}^{(n)}$) for all k and all RF pulses $n=1-N$.

```
function [Mp,Mz] = CalcFourier(Flips,T1, T2, esp)
% Calculate Fourier components for all RF pulses with
relaxation using fft.
% input: Flips= vector of flip angles in degrees.
% T1,T2 = relaxation times in msec.
% esp = time between adjacent RF pulses, msec.
% output: Mp, Mz = matrices with all Fourier components
of Mxy and Mz.
% ====================================================
% initialize variables.
NRF = length(Flips); % number of RF pulses.
mp = 1; % initialmp is 1.
mz=0; % initial mz=0.
T2 = min(T1,T2);
N = 4*NRF + 1;
Mp = zeros(N,NRF); % initialize Mp matrix
Mz=zeros(N,NRF); % initialize Mz matrix
```

```
a = cosd(Flips/2); %alpha of x RF pulses.
b=1j*sind(Flips/2); %beta of x RF pulses.
E1 = exp(-esp/(2*T1));
E2 = exp(-esp/(2*T2));
z=exp(1j*(0:N-1)*2*pi/N).; %N equally spaced
angles.
c1 = conj(a).*b;
c2 = abs(a).^ 2 - abs(b).^2;
c3 = conj(a).*conj(b);
% loop through all RF pulses.
for j = 1:NRF;
mp1 = (E2* conj (z)* conj (a(j))).^2.*mp - E2^ 2*b (j)
* 2* conj(mp)...
+2*E1*E2*C1(j)*Conj(z).*mz + 2*E2*Conj(z)*(1-E1)
*C1(j);
mz = -2*E2*E1*real(c3(j)*conj(z).*mp) +E1^2*c2(j)
*mz + (1-E1)*(E1*c2(j) +1);
mp = mp1;
Mp(:, j) = mp;
Mz(:, j) = mz;
end;
```

\% Fourier transform.
Mp = fftshift (fft (Mp), 1)/N;
$M z=f f t s h i f t(f f t(M z), 1) / N$;

APPENDIX D

CALCULATION OF THE ECHO AMPLITUDE OF THE HENNIG-SCHEFFLER MULTI-SPINECHO SEQUENCE

In this Appendix, we calculate the integral $\boldsymbol{I}^{(n)}$ in Equation (17b) for the Hennig and Scheffler sequence, ${ }^{21}$ where the flip angle θ_{1} of the first periodic operator is $\theta_{1}=90^{\circ}+\theta /$ 2. $\boldsymbol{I}^{(n)}$ in (17b) is the contribution of the rotating magnetization $\mathbf{M}_{\mathbf{P}}$ to the echo. We use $\mathbf{R}^{(\mathbf{n})}$ in Equation (A2) to calculate it, as we did in Equation (32).

The initial magnetization $\mathbf{M}_{\mathbf{i}}=\left[M_{i x}, \mathbf{M}_{i y}, \mathbf{M}_{i z}\right]^{T}$ and the pseudo steady-state magnetization $\mathbf{M}_{\mathbf{A}}$ of this sequence are given by (21) and (22). From Equation (10), the x, y, and z components of $\mathbf{M}_{\mathbf{P}}$ are:

$$
\begin{equation*}
M_{P x}=\frac{-\lambda M_{i z}+\lambda^{2} M_{i x}}{1+\lambda^{2}} ; \quad M_{P y}=M_{i y} ; \quad M_{P z}=\frac{-M_{P x}}{\lambda} . \tag{D1}
\end{equation*}
$$

The relation between θ and θ_{1} are given by Equation (23), ie, $\cos \left(\theta_{1}\right) \frac{\cos \left(\frac{y}{2}\right)}{\sin \left(\frac{\theta}{2}\right)}=-\sin \left(\theta_{1}\right)$. Using this relation and substituting $\mathbf{M}_{\mathbf{i}}$ (Equation (21)) into (D1), we can write $\mathbf{M}_{\mathbf{P}}$
in terms of the flip angles and ϕ :

$$
\begin{align*}
M_{P x}= & 2 C_{0}^{2} \cdot \frac{\lambda^{2} \cos ^{2}(\phi)}{1+\lambda^{2}} ; \quad M_{P y}=-C_{0}^{2} \cdot \sin (2 \phi) \tag{D2}\\
& M_{P z}=\frac{-M_{P x}}{\lambda}
\end{align*}
$$

where $C_{0}=\cos \left(\frac{\theta_{1}}{2}\right)$.
To find $\mathbf{M}_{\mathbf{P}}^{(\mathbf{n})}$, the contribution of $\mathbf{M}_{\mathbf{P}}$ to the echo, we multiply $\mathbf{M}_{\mathbf{P}}$ by $\mathbf{R}^{(\mathbf{n})}$ (Equation (A5)), ie, we substitute $\mathbf{M}_{\mathbf{P}}$ in (D2) into Equation (32). The imaginary part (Equation (32b)) is

$$
\begin{align*}
\operatorname{Im}(\text { echo })_{M P}= & \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(-c_{2} s_{1} \cdot M_{p x}+s_{1} s_{2} \cdot M_{p z}+c_{1} \cdot M_{p y}\right) \\
& d \phi=0 \tag{D3}
\end{align*}
$$

where $s_{2}=\sin \left(\delta_{1}\right)$ and $c_{2}=\cos \left(\delta_{1}\right)$ are given by (A1a) and (A1b), $c_{1}=\cos (n \psi)$ and $s_{1}=\sin (n \psi)$ are given by (A3). All the terms in (D3) are antisymmetric in ϕ and vanish in the integration.

The real part (Equation (32a)) is:

$$
\begin{aligned}
\operatorname{Re}(\text { echo })_{M P}= & \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left[\left(c_{1} c_{2}^{2}+s_{2}^{2}\right) \cdot M_{p x}+c_{2} s_{2}\left(1-c_{1}\right) \cdot M_{p z}\right. \\
& \left.+M_{p y} \cdot c_{2} s_{1}\right] d \phi
\end{aligned}
$$

To evaluate (D4), we substitute (D2) into (D4). The result is

$$
\begin{align*}
\boldsymbol{I}^{(\boldsymbol{n})}= & \operatorname{Re}(\text { echo })_{M P}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} 2 C_{0}^{2} \cdot\left[c_{2}^{2} c_{1} \cdot \cos ^{2}(\phi)\right. \tag{D5}\\
& \left.-c_{2} s_{1} \cdot \sin (\phi) \cos (\phi)\right] d \phi .
\end{align*}
$$

From the definitions of c_{2}, c_{1}, and s_{1} :

$$
\begin{align*}
\boldsymbol{I}^{(n)}= & \frac{C_{0}^{2}}{\pi} \cdot\left\{\int_{-\pi}^{\pi} \frac{\lambda^{2}}{1+\lambda^{2}} \cos ^{2}(\phi) \cdot \cos (n \psi) d \phi-\right. \\
& \left.\int_{-\pi}^{\pi} \frac{\lambda}{\sqrt{1+\lambda^{2}}} \frac{\sin (2 \phi)}{2} \sin (n \psi) d \phi\right\} . \tag{D6}
\end{align*}
$$

Both integrals in (D6) do not have an analytic solution, but can be easily calculated by numerical integration. The full echo amplitude is (Equations (17b) and (24b)):

$$
\begin{equation*}
\operatorname{Echo}(n)=\mathcal{A}_{0}+I^{(n)}=S+S \frac{1-S}{1+S}+I^{(n)} \tag{D7}
\end{equation*}
$$

As explained above in Equation (25), the amplitude of the first echo is $S_{0}^{2}=\sin ^{2}\left(\frac{\theta_{1}}{2}\right)$. The echo in (D7) with $n=1$ is the second acquired echo.

