REVIEW
Quantification of skeletal muscle mitochondrial function by $^{31}$P magnetic resonance spectroscopy techniques: a quantitative review

G. J. Kemp,1 R. E. Ahmad,1 K. Nicolay2 and J. J. Prompers2
1 Department of Musculoskeletal Biology, and Magnetic Resonance and Image Analysis Research Centre, University of Liverpool, Liverpool, UK
2 Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands

Abstract
Magnetic resonance spectroscopy (MRS) can give information about cellular metabolism in vivo which is difficult to obtain in other ways. In skeletal muscle, non-invasive $^{31}$P MRS measurements of the post-exercise recovery kinetics of pH, [PCr], [Pi] and [ADP] contain valuable information about muscle mitochondrial function and cellular pH homeostasis in vivo, but quantitative interpretation depends on understanding the underlying physiology. Here, by giving examples of the analysis of $^{31}$P MRS recovery data, by some simple computational simulation, and by extensively comparing data from published studies using both $^{31}$P MRS and invasive direct measurements of muscle O$_2$ consumption in a common analytical framework, we consider what can be learnt quantitatively about mitochondrial metabolism in skeletal muscle using MRS-based methodology. We explore some technical and conceptual limitations of current methods, and point out some aspects of the physiology which are still incompletely understood.

Keywords metabolism, mitochondria, non-invasive methods, oxygen consumption, $^{31}$P magnetic resonance spectroscopy, skeletal muscle.

Magnetic resonance spectroscopy methods for measuring metabolic flux
Magnetic resonance spectroscopy (MRS) methods can give quantitative information about cellular metabolism in vivo which is difficult to obtain in any other way, but interpretation must take account of the technical characteristics of the methods and their relationship to the underlying biochemistry and physiology.

Approaches to measuring mitochondrial ‘function’
MRS methods in vivo depend on measuring signals from cellular metabolites, and there are basically three ways in which they can be used to measure cellular metabolic fluxes: using exogenous tracers, by magnetic labelling and net-flux methods based on concentration change kinetics.

$^{13}$C MRS with exogenous tracers. An application of this methodology to study muscle mitochondrial metabolism is the use of [2-$^{13}$C]acetate infusion to measure tricarboxylic acid (TCA) cycle rate ($V_{TCA}$) in resting muscle (Befroy et al. 2009); some published results have been reviewed elsewhere (Kemp 2008a, Kemp & Brindle 2012).

$^{31}$P MRS magnetization transfer. Measurements of exchange flux between inorganic phosphate (Pi) and ATP have been used to probe muscle mitochondrial metabolism in resting muscle (Befroy et al. 2009), although this presents some serious technical and
interpretative difficulties, discussed elsewhere (Kemp & Brindle 2012).

$^{31}$P MRS concentration kinetics. The metabolic capability of skeletal muscle for large changes of ATP turnover in support of changing mechanical work output presents a key opportunity for estimation of net fluxes (Kemp & Radda 1994). Of particular relevance here, $^{31}$P MRS measurements of the post-exercise recovery kinetics of cytosolic pH and the cytosolic concentrations of phosphocreatine (PCr), orthophosphate (Pi) and ADP contain much information about two main areas of metabolism. One is cellular pH homeostasis, which involves the processes of what might be termed H$^+$ production, consumption, buffering and efflux (Kemp et al. 1994b, 2001b, 2009). The other is muscle mitochondrial function, in the sense of oxidative ATP synthesis, its regulation in relation to ATP demand, and its pathophysiology. This is the subject of this review.

Mitochondrial capacity

What we will call muscle ‘mitochondrial capacity’, also known as muscle ‘oxidative’ or ‘aerobic’ capacity (Kemp et al. 1993b), is a concept distinct from metabolic flux (Befroy et al. 2009), but can be thought of as a maximum rate of mitochondrial ATP synthesis under some actual or notional maximal activation. There are basically three ways to assess mitochondrial capacity:

$^{31}$P MRS measures of mitochondrial capacity. Several different approaches will be discussed in this review, but it is often convenient to lump these together as $^{31}$P MRS-based Measures of Mitochondrial Function’ (MMMF). Given the physical constraints of MR scanning, MMMF are usually based on inferences from measured responses to submaximal exercise, and the key issue is therefore the validity of the inference. In what follows we will review some technical and physiological aspects of these approaches, illustrated in Figures 2–7, before analysing in Figures 8 and 9 the published $^{31}$P MRS studies of normal adult human muscle which are reliably interpretable in these terms.

Oxygen consumption ($V_{O2}$) during maximal exercise. Non-invasive measurements of whole-body $V_{O2}$ using expired-gas spirometry test the integrated response of the whole cardiorespiratory/vascular/muscular system; this allows not only measurement of whole-body $V_{O2}$ at peak exercise but also studies of whole-body $V_{O2}$ kinetics, to which the contribution of the exercising muscle can be reconstructed by analysis and modelling (Rossiter 2011). Measurement of absolute $V_{O2}$ in specific muscles or muscle groups requires invasive arteriovenous difference (AVD) methods; these can be used in exercise, including maximal single- or two-limb exercise. Published AVD $V_{O2}$ data, including studies with suitably interpretable measurements of muscle biochemistry, will be analysed in Figures 10–12.

Oxidative ATP synthesis ex vivo. Relationships between MMMF and ex vivo measurements of, for example, muscle mitochondrial numbers and content of oxidative enzymes and respiratory chain components will be reviewed below [in the section entitled ‘Validation of MRS-based measures of mitochondrial function (MMMF)’]. Published data from experiments in which maximal rates of mitochondrial ATP production or $O_2$ consumption under optimum near-physiological conditions ex vivo are extrapolated to maximum rates in vivo will be presented for comparative purposes later (in Fig. 10d).

Thus, in this review we will compare for the first time in a common quantitative framework published AVD $V_{O2}$ measurements with comparable $^{31}$P MRS data,¹ and data derived ex vivo. These comparisons will reveal some technical and conceptual limitations of all these methods, and some areas of physiology which are still incompletely understood.

$^{31}$P MRS approaches to muscle energy metabolism

An outline of muscle energy metabolism and its regulation

The utility and limitations of $^{31}$P MRS are illustrated in the simplified view of muscle energy metabolism in Figure 1. The main processes involved can be summarized as follows:

ATP supply and demand. ATP is produced either by glycolysis to lactate, or by oxidation of acetyl coenzyme A in the TCA cycle and subsequent oxidation of NADH via the mitochondrial electron transport chain; the acetyl coenzyme A supplied to the TCA cycle can be derived either from muscle glycolysis or $\beta$-oxidation of fatty acids. ATP is used by various ion pumps including the sarcolemmal Na$^+$/K$^+$-ATPase and the sarcoplasmic Ca$^{2+}$-ATPase, and by the myosin ATPase whose force-generating role dominates ATP use during exercise. Creatine kinase (CK) is sufficiently near equilibrium that its kinetics can usually be ignored (Kemp et al. 1998), and operates such that any temporary mismatch between ATP demand and supply is met by change in [PCr], with very little change in [ATP]; this

¹The authors’ experimental work described here was performed in conformity with Persson (2013).
**Figure 1** Muscle metabolism as seen by $^{31}$P magnetic resonance spectroscopy ($^{31}$P MRS). Muscle ‘energy metabolism’ is simplified to ATP supply and demand, buffered by the creatine kinase (CK) reaction which equilibrates phosphocreatine (PCr), creatine (Cr), ATP and ADP. ADP and Pi are the products of ATP hydrolysis and the substrates for ATP synthesis. ATP turnover is largely demand-driven, regulated by closed-loop feedback mediated by metabolites related to CK, and perhaps also by direct open-loop signals (parallel activation). The shaded block represents what is ‘visible’ to $^{31}$P MRS: the resting muscle $^{31}$P MRS spectrum shows the peaks of Pi and PCr and the three peaks of ATP; indirect calculations yield cytosolic pH, the free concentrations of ADP and ATP, and the free energy of ATP hydrolysis ($\Delta G_{\text{ATP}}$). See main text for a detailed explanation.

is the ‘temporal buffering’ role of CK (Meyer et al. 1984, Kemp 1994, Kemp et al. 1998). Consequent changes in [PCr] are exactly matched by opposite changes in the concentration of creatine (Cr), such that total creatine ([TCr] = [Cr] + [PCr]) remains constant, and approximately matched by changes in [Pi], such that [PCr] + [Pi] remains approximately constant. Free [ADP] is held much lower than [ATP], and tends to increase when [PCr] falls or pH rises according to the CK equilibrium expression, which can most straightforwardly be written as

$$\text{CK equilibrium: } [\text{ADP}] = ([\text{Cr}]/[\text{PCr}])[\text{ATP}]K_{eq}/[\text{H}^+] = ((([\text{TCr}]/[\text{PCr}]) - 1)/[\text{ATP}]K_{eq}/[\text{H}^+])$$

A related quantity is the free energy of ATP hydrolysis, which can be most simply defined as

$$\text{Free energy of ATP hydrolysis: } \Delta G_{\text{ATP}} = \Delta G_{\text{ATP}}^0 + RT \ln([\text{ADP}][\text{Pi}]/[\text{ATP}])$$

where the standard free energy $\Delta G_{\text{ATP}}^0 = -32 \text{ kJ mol}^{-1}$ and $RT = 8.31 \text{ J mol}^{-1} \text{K}^{-1} \times 310 \text{ K} = 2.57 \text{ kJ mol}^{-1}$. More complicated versions of Eqsns 1 and 2 take more precise account of binding of relevant species by Mg$^{2+}$ and K$^+$ (Lawson & Veech 1979, Harkema & Meyer 1997, Kushmerick 1997, Iotti et al. 2005, Vinnakota et al. 2009).

$O_2$ supply and demand. For present purposes, we need not say much about cardiac and pulmonary function, vascular and microvascular physiology, and intramuscular $O_2$ diffusion. However, it is an important principle that $O_2$ usage by muscle requires an appropriate $[O_2]$ gradient profile from lungs to the mitochondrion (Kemp et al. 2002a, Kemp 2004); in particular myocyte $[O_2]_{\text{cytosolic}}$ must be low enough to support $O_2$ diffusion from the capillary, but high enough to drive mitochondrial cytochrome oxidase (Richardson et al. 1999). We return to some relationships between $^{31}$P MRS recovery measurements and non-invasive measures of muscle tissue oxygenation below (in the sections entitled ‘Approaches to measurement of $O_2$ transport and consumption in vivo. Combining NIRS and $^{31}$P MRS’ and ‘Published data on patients with abnormalities in MMFM. Diseases impairing $O_2$ delivery’).

Cellular pH homeostasis. Lactate production by glycolytic ATP synthesis can be thought of as accompanied by 1 : 1 generation of $H^+$ which tends to lower cell pH, while the pH-dependent stoichiometry of $H^+$ in the CK reaction tends to raise cell pH when [PCr] falls and vice versa (Kemp et al. 1993a, 2001b, 2006, Kemp 2005b). When pH falls, various processes that amount to net $H^+$ efflux (Kemp et al. 1994b, 1997) tend to restore it. The resulting net changes in cell pH depend on the net $H^+$ load to the cytosol ($H^+$ production less $H^+$ consumption and $H^+$ efflux), and are inversely proportional to the cytosolic buffer capacity (Kemp 2005b, Vinnakota et al. 2009). During recovery from exercise, ATP synthesis is overwhelmingly oxidative, and net $H^+$ efflux restores pH to resting values (Kemp et al. 1994b, 1997).

Metabolic regulation of ATP turnover. For much of the dynamic range of ATP turnover, until fatigue...
supervenes, control is dominated by ATP demand (Jeneson et al. 2000). Important in the present context is how ATP supply is matched to demand. Attention has long been focused on the role of closed-loop negative-feedback regulation, particularly with reference to CK-related metabolites (ADP, Cr, Pi), in the control of mitochondrial ATP synthesis. Some details will be discussed later in relation to estimation of maximal rates, but the general idea (Kemp 1994) is that the rate of oxidative ATP synthesis ($Q$) is some function of a signal ($X$), which itself is some function of the mismatch between ATP supply and ATP demand:

**General feedback regulation of oxidative ATP synthesis:**

$$Q = f(X)$$  \hfill (3)

This works such that any tendency of ATP supply to fall short of demand will result in a change in $X$ sufficient to restore the balance. As we will see, there are several candidate negative-feedback signals which are related to the CK-equilibrium. In engineering terms, this is integral feedback control, because the CK system is a time-integrating comparator of ATP supply and demand, where any mismatch leads to a signal which increases with time; there can be no true steady-state error (Kemp 1994, Cloutier & Wellstead 2010). The possibility of a direct (‘open loop’, ‘feed-forward’ or ‘parallel’) activation of ATP synthesis by the signal to contraction (Korzeniewski 1998), independent of closed-loop feedback, is discussed later (in the sections entitled ‘Regulation of oxidative ATP synthesis: open vs. closed-loop mechanisms’ and ‘Parallel activation revisited’).

**Resting muscle.** In what follows, we are mainly concerned with perturbations from the resting steady state. We discuss what ‘resting’ means below (in the section entitled ‘What is the relevant ‘basal’ rate of ATP synthesis?’). For present purposes, we simply note that muscle’s dynamic responses are conditioned by biochemical characteristics of the resting state. We must therefore consider how concentrations are regulated in resting muscle, where ATP is supplied almost exclusively by oxidative phosphorylation, oxidizing mainly fatty acids in the fasting state, and glucose postprandially (Kemp & Brindle 2012). Any metabolite that functions as a mitochondrial feedback signal must be at a value appropriate to resting ATP demand: in resting muscle (denoted by the subscript R), Eqn 3 becomes

**Feedback regulation of resting ATP synthesis:**

$$Q_R = f(X_R)$$  \hfill (4)

This logic probably applies both to [ADP], which defines $[\text{Cr}]/[\text{PCr}]$ (Eqn 1), and to [Pi] (Kemp 1994), both of which contribute to $AG_{\text{ATP}}$ (Eqn 2). Resting cell [Pi] is additionally dependent by pump-and-leak principles on sarcolemmal Na+–dependent Pi uptake (Kemp & Bevington 1993, Polgreen et al. 1994), and total cell creatine ([TCr]) similarly on sarcolemmal Na+–dependent Cr uptake (Odoom et al. 1996). Resting cell pH is set by processes of H+ efflux, dominated by the Na+/H+-antiporter, such that resting pH is, approximately, the pH at which net H+ efflux is zero (Kemp et al. 1994b). Lastly, the total adenine nucleotide pool size, the overwhelmingly largest part of which is ATP, is set by the balance of net adenine nucleotide synthesis and breakdown, not by ATP supply and demand.

**The view through ‘the $^{31}$P MRS window’**

Figure 1 also illustrates how key components of this system can be quantified by $^{31}$P MRS. PCr, Pi and ATP are directly detectable. Although absolute quantitation methods exist, a literature value of [ATP] is commonly used as an internal standard to quantify [Pi] and [PCr] (Kemp et al. 2007). Cytosolic pH is estimated from the chemical shift (i.e. MR resonance frequency) difference between Pi and PCr. Other quantities can be calculated indirectly: free [ADP] from [PCr] and pH using the CK equilibrium [Eqn 1, usually assuming a literature value of [TCr] (Kemp et al. 2007)], free [AMP] from [ATP] and [ADP] using the adenylyl kinase equilibrium, and $\Delta G_{\text{ATP}}$ from [Pi], [ADP] and [ATP] (Eqn 2). Published mean pH and concentrations2 in normal resting muscle (indicated by subscript R) are summarized elsewhere (Kemp et al. 2007): roughly $[\text{PCr}]_R \approx 33 \text{mmol l}^{-1}$ more economically expressed as 33 mm, $[\text{Pi}]_R \approx 4 \text{mm}$, pH$_R \approx 7.0$, $[\text{ADP}]_R \approx 14 \mu$mol l$^{-1}$ and $\Delta G_{\text{ATP}, R} \approx -63 \text{kJ mol}^{-1}$; the ‘parametric’ concentration $[\text{TCr}] \approx 43 \text{mm}$ can be taken as constant across the dynamic range of ATP turnover, and the same is true of $[\text{ATP}] \approx 8 \text{mm}$ under most of the conditions relevant here.

**Quantitative analysis of $^{31}$P MRS data from skeletal muscle**

In the light of the outline of muscle energy metabolism presented above, two general principles of analysis of dynamic $^{31}$P MRS data can be summarized as follows:

\footnote{These mean values are used in the recalculation of published data presented in Figures 8, 9, 11 and 12 where study-specific values are not available, or where departures from consensus means would skew the comparisons.}
ATP turnover: basal ATP use
+ (force × contractile cost)
≈ glycolytic ATP synthesis
+ oxidative ATP synthesis
+ net PCr breakdown

\[ \text{H}^+ \text{ buffering + H}^+ \text{ consumption by PCr breakdown + H}^+ \text{ efflux} \]

pH homeostasis: glycolytic H\(^+\) production
\[ \approx \text{H}^+ \text{ buffering + H}^+ \text{ consumption by PCr breakdown + H}^+ \text{ efflux} \]

Equations 5 and 6 are generally valid, but it is convenient to rewrite them for the special case of recovery from exercise: here no ATP is being used to generate contractile force; glycolytic ATP synthesis has fallen to zero at the end of exercise;\(^3\) rather than H\(^+\) being ‘buffered’ by cytosolic buffers as pH falls, pH is rising back to basal as a result of processes amounting to H\(^+\) efflux, and while this is happening H\(^+\) is being released from cytosolic buffers (there is no agreed term for this, so if H\(^+\) is buffered when pH falls, we will say that H\(^+\) is ‘unbuffered’ when pH rises); finally, the term ‘H\(^+\) consumption accompanying PCr breakdown’ in Eqn 6 is now negative, i.e. there is H\(^+\) generation as a consequence of PCr resynthesis, and this is part of the H\(^+\) load which must be removed by H\(^+\) efflux. Thus,

ATP turnover in recovery: oxidative ATP synthesis
≈ PCr resynthesis
+ basal ATP use

pH homeostasis in recovery: H\(^+\) efflux
≈ H\(^+\) from PCr resynthesis + H\(^+\) ‘unbuffering’

Thus, \(^{31}\)P MRS gives access to a limited set of cytosolic metabolite concentrations, which nevertheless occupy a central place in the structure of muscle metabolism which allows some useful inferences about metabolic fluxes (Kemp & Radda 1994).

\(^{31}\)P MRS approaches to muscle mitochondrial function

Mitochondrial function in largely oxidative exercise and recovery

The subject of this review is the use of \(^{31}\)P MRS to assess mitochondrial metabolism, in the sense of the oxidative generation of ATP (Kemp et al. 2002b, Kemp 2004). The simplest case to analyse is ‘pure aerobic’ exercise (i.e. exercise beneath the lactate threshold, where the contribution of glycolytic ATP synthesis is relatively small) and recovery following its cessation. In exercise of this kind PCr kinetics are monoexponential (Meyer 1988), and at least in the early phase so are the kinetics of pulmonary VO\(_2\) (Rossiter 2011). Monoexponential kinetics of [PCr] imply a linear steady-state relationship of oxidative ATP synthesis to the fall in [PCr], and vice versa (Mahler 1985, Funk et al. 1990, Kemp 1994, Kemp et al. 1998). Similar arguments apply to the relationship between oxidative ATP synthesis rate and ΔG\(_\text{ATP}\) (Meyer 1988, Kemp 1994). This analysis also predicts that post-exercise PCr recovery kinetics will be ‘first order’, i.e. exponential (Meyer 1988), and that the absolute PCr resynthesis rate measures suprabasal oxidative ATP synthesis rate.

Some experimental data to illustrate the analyses

An example of data from an experiment using largely oxidative exercise and recovery is given in Figures 2 and 3. These show time-course data from isometric exercise at two intensities; even at the high-intensity pH changes are fairly small, and the PCr recovery rate constants (k\(_{PCr}\)) are the same for both, consistent with simple models of mitochondrial regulation (Meyer 1988) which we will discuss in the next section. Figure 4 uses this data set to illustrate three approaches to analysing PCr recovery data. The three panels show either the rate of PCr resynthesis (V\(_{PCr}\)) (Fig. 4a) or the estimated oxidative production rate (Q) derived from it by adding an assumed basal rate (Q\(_b\)) (Fig. 4b,c), plotted against one of three other variables throughout the period of recovery, beginning at the end-exercise/initial-recovery point and ending when concentrations have returned to their resting level. These plots illustrate the extrapolation used either explicitly or implicitly in the three approaches. The legend to Figure 4 gives details of the calculations used.

The aim of this analysis was to use recovery data to derive an MMMF, as defined above. While any such measure will correlate with other relevant measurements, we can usefully define an absolute MMMF as one which is intended to correspond to a maximal rate of mitochondrial ATP synthesis, and so has units of metabolic flux, here mmol (l cytosolic water)\(^{-1}\) min\(^{-1}\) i.e. mM min\(^{-1}\). A relative MMMF is one for which this is not so. Here, we use the symbol Q\(_{\text{MAX}}\) for the absolute MMMF calculated from PCr recovery kinetic data. The general argument follows from Eqn 3; assuming a relationship between Q and some feedback signal X, we calculate

\(^3\)Subject to some qualifications which we discuss below (in the section entitled ‘Is PCr resynthesis fuelled entirely by oxidative ATP synthesis?’).

© 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd, doi: 10.1111/apha.12307
General estimate of maximal oxidative ATP synthesis rate:

\[ Q_{\text{MAX}} = f(X_{\text{MAX}}) \]  \hspace{1cm} (9)

where \( X_{\text{MAX}} \) is the value of \( X \) in some suitable state of 'maximal' stimulation and/or output. We will now consider three main approaches which we can describe in terms of three 'models': the 'linear-model', the 'ADP-model', and the 'non-equilibrium thermodynamic (NET) model', differing according to the choice of \( f \) and \( X \) in Eqn 9.

**Linear-model approaches to muscle mitochondrial function**

Figure 4(a) plots \( V_{\text{PCR}} \) against the relative fall in \([\text{PCr}]\) below resting values (i.e. the absolute fall in \([\text{PCr}]\),...
which we will call [ΔPCr], divided by the resting value, [PCr]R. The slope from the origin to the end-exercise (initial-recovery) point is an apparent rate constant; if PCr kinetics are monoexponential the data will lie on a straight line whose slope is the exponential rate constant k_{PCr}, and the initial rate is then V_{PCr} = k_{PCr} [PCr]E, where the subscript E refers to the end-exercise value. A popular approach is to use k_{PCr} as a relative MMMF, or else the time constant s_{PCr} (s = 1/k_{PCr}) or half-time t_{1/2} (t_{1/2} = log_2/k_{PCr}) as inverse MMMFs. An extension of this approach (Conley et al. 2000a, Jubrias et al. 2003) is to define V_{PCr} notionally extrapolated to maximal PCr depletion as an absolute MMMF (Fig. 4a): this yields a ‘linear model’ estimate of the maximum rate of oxidative ATP synthesis:

Linear extrapolation to maximal oxidative ATP synthesis rate: Q_{MAX} = k_{PCr} [PCr]_{E} \quad (10)

in which the maximal ‘signal’ (N_{MAX} in Eqn 9) is the theoretically maximum rise in [Cr] and fall in [PCr]. Note that the extrapolation implicit in Eqn 10 is not literally possible: when exercise is intense enough for substantial PCr depletion, pH will fall, which is associated with slowing of PCr recovery, as we discuss below (see Figs 5 and 6a). Despite the complex effects of [Cr] and [PCr] on mitochondrial respiration mentioned later, Eqn 10 is usually taken as an empirical index rather than a formal extrapolation of a causal feedback relationship which holds across the full dynamic range. Furthermore, this approach does not claim to account for the resting rate of ATP turnover: the origin in Figure 4(a) is the normal resting state where V = 0 (because [PCr] is stable), but Q = Q_R; there is no suggestion that the linear relationship observed in recovery holds ‘below’ the normal resting state (which would imply, unrealistically (Kemp & Brindle 2012), that Q_R = k[Cr]_R)

‘ADP-model’ approaches to muscle mitochondrial function

Figure 4(b) illustrates an alternative approach based on the hyperbolic (Michaelis–Menten) dependence in vitro of mitochondrial respiration rate on experimentally...
Manipulated [ADP] (Chance & Williams 1955). A similar relationship was first described in exercising muscle in vivo using power output as a surrogate for oxidative ATP synthesis (Chance et al. 1985), and it has since been often noted that the initial-recovery $V_{PCR}$ has such a relationship to end-exercise [ADP] ([ADP]E) across experiments in which this varies (Kemp et al. 1993a,b, 2002b, Boska 1994, Jeneson et al. 1995, 1996, 2009, Thompson et al. 1995, Combs et al. 1999). (We present a comprehensive literature summary of this relationship below in Figs 8a and 9a). A similar relationship holds when $V_{PCR}$ is followed through...

**Figure 5** Example: observed and simulated effects of H+ handling and pH on recovery. The figure shows the results of a minimal simulation (see main text) applied to published data from five subjects each studied several times each under different exercise conditions to achieve a range of pH_E (van den Broek et al. 2007). (a) shows relationships of [PCr]E and pH_E, the starting point for recovery; in the simulations shown later in (d) [PCr]E is varied incrementally and pH_E is obtained for various values of d[PCr]E/dpH_E, increasing as the arrows show: a mean d[PCr]E/dpH_E line is also shown. Data points (1 per subject) are shown in three pH-groups, taking together studies where pH change during exercise was small (the ‘near-rest pH’ group), moderate (‘intermediate pH’) and large (‘low pH’). (b) shows the simulated time constants $\tau_{PCr}$ (solid lines) and $\tau_{ADP}$ (dashed lines) as a function of the H+ efflux pH-sensitivity parameter $\lambda$ for various values of pH_E, which is varied holding [ADP]E constant. (c) shows the same data in a different way, $\tau_{PCr}$ and $\tau_{ADP}$ as a function of pH_E for various H+ efflux settings $\lambda$. The data points (key as (a)) show reasonably similar behaviour to the simulated lines. In (b) and (c) d[PCr]E/dpH_E was chosen to keep [ADP]E constant, but different assumptions better match the initial conditions in (a), where [ADP]E (not shown) rises modestly with decreasing pH_E. (d) is a summary figure in which each pair of lines (solid = $s_{PCr}$, dashed = $s_{ADP}$) makes a different assumption about d[PCr]E/dpH_E (corresponding to the lines in (a)) and each data point (see key) is the mean of all studies for a single subject.

**Figure 6** Example: further observed and simulated effects of H+ handling and pH on recovery. This figure continues the analysis and simulation of Figure 5, based on the published data set from five subjects (van den Broek et al. 2007). The leftmost pair of panels (a) and (b) show data from all studies of each subject (not distinguished in these plots), to show the marked pH-dependence of $k_{PCr}$ (=1/$s_{PCr}$) (a) and the small but statistically significant ($P = 0.03$) pH-dependence of apparent $Q_{MAX}$ (b), along with overall regression lines. The rightmost pair of panels (c) and (d) show the simulated recovery rate constants $k_{PCr}$ (c) and $k_{ADP}$ (=1/$s_{ADP}$) (right-hand panel) as a function of $Q_{MAX}$ for three assumptions about H+ efflux (see key); data points (1 per study) are the ‘near-rest’ and ‘low’ pH subgroups. These simulations assume the same pH-dependence of $Q_{MAX}$ as the regression line in panel (b), although this assumption does not have much effect on the results.
recovery to baseline⁴ (Kemp et al. 1996, Layec et al. 2013a); we present an example in Figure 4(b). Unlike the linear model considered above, in principle the ADP-model, and the NET-model considered in the next two sections, can explain the basal state according to Eq 4. This is why the y-axis in Figure 4(b,c) is the absolute rate of oxidative ATP synthesis \( Q = V + Q_B \) where \( V \) is the measured rate of PCR resynthesis and \( Q_B \) the relevant basal rate of ATP turnover, which is discussed further below (in the section entitled ‘What is the relevant ‘basal’ rate of ATP synthesis?’).

For any candidate model of feedback control of mitochondrial ATP synthesis, the question must be asked whether a single relationship plausibly holds across the whole dynamic range: in other words does the single function work in both Eqsns 4 and 9? For the ADP-model, it was realized some while ago that a simple hyperbolic relationship to [ADP] cannot, given observed resting [ADP] ([ADP]ₐ), account for the whole dynamic range of rates without unrealistic assumptions about basal ATP turnover rate. A cooperative, sigmoid, relationship, corresponding to a Hill coefficient (\( n \)) of ~2, gives a better fit (Jeneson et al. 1996, 2009, Gieslar & Dobson 2000, Layec et al. 2013a). This is sometimes called a ‘second-order’ relationship, to distinguish it from the ‘first order’ case where \( n = 1 \). In this model, Eqn 3 takes the form

\[
\text{ADP-model control of oxidative ATP synthesis:} \quad Q = \frac{Q_{\text{MAX}}}{\{1 + (\text{Km}/[\text{ADP}]_\text{E})^n\}}
\]

(11)

It follows that Eqn 9 used to estimate maximal oxidative ATP synthesis rate takes this form:

\[
\text{ADP-model extrapolation:} \quad Q_{\text{MAX}} = (V_E + Q_B)\{1 + (\text{Km}/[\text{ADP}]_\text{E})^n\}
\]

(12)

where the maximal ‘signal’ (\( Q_{\text{MAX}} \) in Eqn 9) corresponds to ‘infinite’ [ADP]. We return to this below.

An alternative relative MMMF in this approach is the ADP recovery halftime (or time constant) (Adatia et al. 1993, Taylor et al. 1994, Kemp et al. 1995, Argov et al. 1996, De Stefano et al. 1996). This is discussed further below (in Fig. 5).

Non-equilibrium thermodynamic approaches to muscle mitochondrial function

Figure 4(c) illustrates a third approach, which can be broadly thought of as based on NET. The simplest version focuses on quasi-linear relationships of oxidative ATP synthesis rate to \( \Delta G_{\text{ATP}} \) (Meyer 1988, Jeneson et al. 1995); either the rate constants of PCr or \( \Delta G_{\text{ATP}} \), or, equivalently, the slope \( dQ/d\Delta G_{\text{ATP}} \), which has been defined on an electrical analogy as mitochondrial conductance (Meyer 1988), are used as relative MMMF (Kemp 1994). However, this relationship is linear only over a middle range of \( \Delta G_{\text{ATP}} \) (Westerhoff & van Dam 1987, Westerhoff et al. 1995), being more exactly sigmoid, as is observed for initial \( V_{\text{PCR}} \) and \( \Delta G_{\text{ATP}} \) in vivo (Jeneson et al. 1995, 1996, 1997, 2009, Combs et al. 1999). More complex fits can be used to obtain an extrapolated NET-model maximum flux (Fig. 4c), for example, (Westerhoff & van Dam 1987, Westerhoff et al. 1993).

\[
\text{NET extrapolation:} \quad Q_{\text{MAX}} = \frac{(V_E + Q_B)\{A \exp((\Delta G_E - C)/(RT)) - 1\}/\{A \exp((\Delta G_E - C)/(RT)) + B\}}
\]

(13)

where \( A \) is a constant which has the value ~1 in a simple unimolecular substrate-to-product reaction (Van der Meer et al. 1980), but no particular expected value in more complex cases, \( B \) is a constant relating to thermodynamic reversibility and \( C \) is the ‘static’ head, the \( \Delta G_{\text{ATP}} \) at which flux is zero, which can be given a physiological interpretation (Harkema & Meyer 1997). The maximal ‘signal’ (\( X_{\text{MAX}} \) in Eqn 9) is now at ‘infinite’ \( \Delta G_{\text{ATP}} \), although the Q-\( \Delta G_{\text{ATP}} \) is usually taken to flatten out well before \( \Delta G_{\text{ATP}} \) approaches positive values (Fig. 4c). A simple analysis based on the ADP-model shows that the mid-range slope \( dQ/d\Delta G_{\text{ATP}} \) the ‘mitochondrial conductance’ (Meyer 1988), is ~6\( Q_{\text{MAX}} \)/RT (Kemp et al. 1998, 2001b)). A purely empirical sigmoid function has also been used to test \( Q\Delta G_{\text{ATP}} \) relationships, and so to estimate a maximum value of \( Q \) (Jeneson et al. 1997, 2009).

Some formal relationships between [ADP]- and \( \Delta G \)-dependence, as well as some general properties of closed-loop feedback, are summarized elsewhere (Kemp 1994, 2008B, Kemp et al. 1998); we return to this in discussion of Figure 7 below.

Some technical and physiological issues in the analysis of PCr recovery kinetics

Different \( Q_{\text{MAX}} \) estimates in different models

Calculations based on these different models do not in general give numerically similar extrapolated estimates of \( Q_{\text{MAX}} \). The ADP-model (Eqn 12) gives values lower than the ‘linear’ approach (Eqn 10); compare Figure 4(a,b). In general, this relationship depends on the shape of the [ADP]-dependence of \( Q \); for submaximal exercise the two models predict

© 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd, doi: 10.1111/apha.12307
the same extrapolated maximal rate only (if pH changes are ignored) in what is now agreed to be the unrealistic case where \( n = 1 \), and then only if \( K_m = [\text{ATP}] K_{eq}/[\text{H}^+] \approx 50 \mu M \) (Kemp 1994, Kemp et al. 1998). Of course for maximal exercise, in the literal sense where \([\text{PCr}]\) is negligible and \([\text{ADP}]\) is very high, the extrapolated \( Q_{\max} \) is close to the observed initial \( V_{PCr} \) in all approaches.

**Regulation of oxidative ATP synthesis: open- vs. closed-loop mechanisms**

Setting aside these model-dependent technicalities of calculation, there is considerable empirical support for feedback-based regulation of oxidative ATP synthesis, including the observational studies cited above. In the simulation studies to be discussed below, this kind of model is also capable of explaining much of the observed relationship between PCr recovery kinetics and pH. Studies in model systems _ex vivo_ (mitochondria, CK and its substrates, and a glucose + hexokinase ATP-splitting system) confirm the basic prediction of monoexponential (‘linear’) kinetics, with rate constant proportional to mitochondrial content and inversely proportional to \([\text{TCr}]\) (Glancy et al. 2008). While these results were originally presented (Glancy et al. 2008) as confirmation of an electrical analogue of the linear thermodynamic model (Meyer 1988), they also reproduce a number of general properties of CK-mediated feedback-controlled supply-demand mechanisms (Kemp 2008b).

However, it might seem that standard feedback models take, by contemporary standards, a naïve view of metabolic causation, seeming to posit a single signal acting at a single step. Nevertheless, detailed computational modelling approaches have left this approach surprisingly unchanged, in the sense that \( V_{O_2} \) continues to appear as a relatively invariant function of \([\text{ADP}]\) (or other CK-related signals such as \( \Delta G_{ATP} \)) (Wu et al. 2007, Jeneson et al. 2009, Schmitz et al. 2011, 2013).

**Is PCr resynthesis fuelled entirely by oxidative ATP synthesis?**

That post-exercise PCr recovery is overwhelmingly aerobic is shown by the common observation that PCr does not recover during cuff ischaemia (Harris et al. 1975, Dawson et al. 1980, Taylor et al. 1983, Blei et al. 1993, Quistorff et al. 1993, Wackerhage et al. 1998). Furthermore, the observation of higher order (i.e. non-monoexponential) PCr recovery kinetics following high-intensity exercise (Harris et al. 1976, Arnold et al. 1984, Walter et al. 1997) does not imply any glycolytic contribution: the usual explanation for a slow component of PCr recovery relates it to the interactions between pH and PCr in the CK equilibrium (Sahlin et al. 1979, Takahashi et al. 1995) that we discuss below (in Fig. 5).

However, whether there is never any glycolytic contribution to post-exercise PCr recovery cannot be answered definitively. _In vitro_ and modelling studies show that glycolytic ATP production _could_ drive PCr re-
Figure 8 Published 31P MRS data from quadriceps. This figure summarizes the results of a number of published 31P MRS studies of human quadriceps muscle. Each point (or pair of linked points) shows the mean value(s) in a single study. Two studies yielding multiple data points are shown separately: 'MRS: dynamic' is (Takahashi et al. 1995), 'MRS: isometric' is (Vanderthommen et al. 2003). Other symbols show single data points (or sometimes two) from Figure 2 and the following studies: (Marrades et al. 1996, Conley et al. 2000a, Rossiter et al. 2002a, b, Jeneson & Bruggeman 2004, Smith et al. 2004, Trenell et al. 2006, 2003). Other symbols shows single data points (or sometimes two) from Figure 2 and the following studies: (Marrades et al. 1996, Conley et al. 2000a, Rossiter et al. 2002a, b, Jeneson & Bruggeman 2004, Smith et al. 2004, Trenell et al. 2006, 2003).

(a) shows estimated oxidative ATP synthesis rate (Q) as a function of the x and y coordinates is the initial VPCr calculated as kPCr†, plus assumed Qbas as a function of [ADP]bas; the notional fit is the one given in Figure 4(b). (b) shows Q as a function of relative fall in [PCr] below resting (as in Fig. 4a); the slope from the origin to each point is the rate constant kPCr, and the radiating lines correspond to the lowest and highest observed values of kPCr. (c) Shows kPCr as a function of the fractional fall in PCr; the product of the x and y coordinates is equivalent to the lowest and highest observed values of VPCr. (d) shows kPCr, plotted against the end-exercise fall in pH below basal. Note the congruence, particularly evident in the multipoint datasets, between the decline in kPCr with increasing pH fall in panel (d) and with increasing [PCr] fall in panel (c), and the progressive decline in the slope of PCr resynthesis rate against [PCr] in panel (b); all these are absorbed into the notional pH- and [PCr]-dependent relationship between PCr resynthesis rate and [ADP] in panel (a). A possible explanation is considered later (see Fig. 12) for the apparently anomalous data point arrowed in panel (a), which is from a two-leg in-magnet cycle exercise study at unusually high power output for an MRS study (Jeneson & Bruggeman 2004); the very high rate of PCr resynthesis in this study (arrowed in panel b) corresponds mathematically to a high recovery rate constant at relatively high PCr depletion (arrowed, which defines the ‘highest Q’ line in panel c).

Oxidative ATP synthesis rate (Q) mmol min⁻¹

PCr rate constant (kPCr) 1 min⁻¹

© 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd, doi: 10.1111/apha.12307
comparisons between different experiments achieving comparable end-exercise pH. In the special case of partial PCR recovery in early post-exercise ischaemia, where $H^+$ efflux must be zero, one report (Crowther et al. 2002) finds evidence of very transient glycolytic ATP synthesis in a buffering analysis of pH homeostasis in ischaemic recovery:

$$\text{glycolytic } H^+ \text{ production} \approx H^+ \text{ buffering} - H^+ \text{ from PCR resynthesis}$$

which is reasonably consistent with that inferred from PCR changes alone by Eqn 14 (Crowther et al. 2002).

Overall, a reasonable conclusion is that a glycolytic contribution to PCR recovery cannot be excluded, but it is always small. It is worth noting that this rapid deactivation of glycolytic ATP synthesis at the end of exercise implies that, whatever the role of closed-loop feedback mechanisms involving, e.g. Pi, ADP and AMP (Vinnakota et al. 2006), the control of glycolytic ATP synthesis in vivo during exercise/recovery must be dominated by open-loop mechanisms (Crowther et al. 2002). A computational study suggests that this may be mediated by inactivation of phosphofructokinase and pyruvate kinase (Schmitz et al. 2010).

**What is the relevant ‘basal’ rate of ATP synthesis?**

The basal needs of the muscle for ATP synthesis rate ($Q_B$ in Eqns 11–13) also contribute to ATP demand during recovery from exercise, and this complicates...
The interpretation of PCr recovery data. There are several related issues.

ATP turnover in resting muscle. Consider first the rate of ATP turnover in resting muscle (Q_R in Eqn 4), i.e. in muscle which is not only mechanically inactive, but long enough after prior exercise for PCr and pH to have recovered back to pre-exercise values. This equates to steady-state basal ATP turnover, in which case Eqn 5 becomes the following:

Resting ATP turnover: oxidative ATP synthesis

= basal ATP demand = Q_R

(17)

and in Eqn 6 glycolytic H⁺ production ≈ H⁺ efflux ≈ 0. Note that resting muscle responding, e.g. to acutely increased circulating insulin is ‘basal’ in the sense that ATP turnover is not being increased to sustain contraction, but not in all senses: compared to the non-insulin-stimulated state both glucose uptake and glycogen synthesis are increased, so perhaps are V_O2 and oxidative synthesis rate, and so are both pH and [Pi] (reviewed in (Kemp & Brindle 2012)). We can ignore this distinction in the present context.

One approach to estimating Q_R is to use cuff ischaemia to inhibit oxidative ATP synthesis and H⁺ efflux; once muscle O₂ has fallen to near-zero, basal ATP demand, which is assumed not to change during this manipulation (Befroy et al. 2009), is met first by PCr breakdown, then increasingly also by glycogenolysis.

Figure 10 O₂ consumption rates in quadriceps in cycle exercise (CE) and single-leg knee extension (KE). This figure summarizes the results of a number of published arteriovenous difference (AVD) measurements of O₂ consumption rate (V_O2) of human quadriceps muscle. In (a) and (b), one study yielding multiple data points in a direct comparison between CE and KE (Mortensen et al. 2008) is shown separately (linked points) and in the insets; other symbols shows single data points (or sometime two) from the following studies: CE (Welch et al. 1977, Bender et al. 1988, Ahlborg & Jensen-Urstad 1991b, Poole et al. 1991, 1992, Jensen-Urstad & Ahlborg 1992, Knight et al. 1992, 1993, Roca et al. 1992, Jensen-Urstad et al. 1993, Schaffartzik et al. 1993, Marmades et al. 1996, Salo et al. 1999, Stellingwerf et al. 2006, Mortensen et al. 2008, Esposito et al. 2011, Barratt-O’Keeffe et al. 2012, Ruu et al. 2012), and KE (Andersen & Saltin 1985, Andersen et al. 1985, Bangsbo et al. 1990, 1992a,b, 2001, 2002, Blomstrand et al. 1997, Gibala et al. 1999, Pedersen et al. 1999, Redegran & Saltin 2000, Rasmussen & Rasmussen 2000, Ferguson et al. 2001, Krustup et al. 2001, 2003, 2004, 2009, Rasmussen et al. 2001, Richardson et al. 2002, Lawrenson et al. 2003, Mourzakis et al. 2004, Amann et al. 2011, Esposito et al. 2011, Jones et al. 2012). (a) Shows whole-muscle V_O2 as a function of power output. (b) shows, in the same studies, inferred rates of oxidative ATP synthesis; these are calculated from V_O2 rates in (a) using the following assumptions: P:O = 2.16 on the basis of mouse experiments combining NIRS and 31P MRS during resting ischaemia (Marcinek et al. 2004), multiplied by 1.19 (Brand 2005) to account for the oxidation of predominantly pyruvate (from glycogen) in short-duration exercise rather than fatty acids as at rest; muscle mass is as given in the cited papers, or else taken as relevant means of those: 10 kg for resting leg muscle and for each leg in CE, 2.5 kg for KE; muscle density = 1.049 kg l⁻¹ and muscle cell water = 0.67 l kg⁻¹ wet wt (Brindle et al. 1989); 1 mol O₂ = 25.5 l (Blomstrand et al. 1997). (c) collects the maximal-exercise rates of oxidative ATP synthesis (a subset of the data points in b), and the solid line shows the overall means. (d) shows, for comparison, values from ex vivo experiments (Tonkonogi & Sahlin 1997, Starritt et al. 1999, Tonkonogi et al. 1999, Rasmussen & Rasmussen 2000, Rasmussen et al. 2001, 2003, 2004, 2009, Rasmussen et al. 2001, Richardson et al. 2002, Lawrenson et al. 2003, Mourzakis et al. 2004, Amann et al. 2011, Esposito et al. 2011, Jones et al. 2012) in which data are back-calculated to physiological temperature and mitochondrial density to estimate the in vivo maximal V_O2; the solid line shows the overall means. For comparison with (c), the equivalent mean value of five studies of two-arm ergometer exercise is 35 mM min⁻¹ (Ahlborg & Jensen-Urstad 1991a, Jensen-Urstad et al. 1993, Volianitis & Secher 2002, Volianitis et al. 2004, Boushel et al. 2011). The inset to panel (b) also shows data from the few quadriceps 31P MRS studies in which power output data from dynamic exercise is reported (references listed later in legend to Fig. 12c).
Ischaemic resting ATP turnover: basal ATP use
\[ \text{glycolytic ATP synthesis} + \text{PCr breakdown} \]  

Ischaemic resting pH homeostasis:
\[ \text{glycolytic H}^+ \text{ production} \approx \text{H}^+ \text{ buffering} + \text{H}^+ \text{ consumption by PCr breakdown} \]  

Data on ATP turnover in ‘normal’ resting muscle obtained by this method and others are summarized elsewhere (Kemp 2008a, Kemp & Brindle 2012), but little is known about how this might change with disease, age or training state. Resting \( V_{\text{TCA}} \) is increased in trained muscle (Befroy et al. 2008), in hereditary resistance to thyroid hormone (Mitchell et al. 2010) and by experimental treatment with \( T_3 \) (Jucker et al. 2000), whereas it is reduced in insulin resistance (Befroy et al. 2007) and with ageing (Petersen et al. 2003). However, it is not known how these changes in substrate oxidation are related to changes in resting ATP turnover, because Pi-ATP exchange measurements, which have been used to make inferences in such cases, largely reflects a glycolytic exchange component not causally related to ATP turnover (Kemp & Brindle 2012).

'Basal' ATP turnover in exercise and early recovery. However, the ‘basal’ rate of ATP turnover at the end of exercise (\( Q_b \) in Eqns 11–13), in the sense of that not available to drive the resynthesis of PCr, is not necessarily the same rate in resting muscle at
steady state, because, for example, ion transport might be much larger at the end of exercise. There are no independent measurements of this. All we can say is that $Q_B$ is presumably not very large, otherwise its own intrinsic decay kinetics (whatever they might be) would dominate those of PCr recovery, making unlikely any reasonable fit to the simple models discussed here. Assumptions about $Q_B$ vary in the literature, some using near-true resting values (Jeneson et al. 1996, 1997), others using larger values based on fits to the whole dynamic range such as 1.5 mM min$^{-1}/C_0$ (Jeneson et al. 1996) and 2.4 mM min$^{-1}/C_0$ (Jeneson et al. 2009): we have used the latter value here.

Resting ATP turnover and resting metabolite concentrations. A notable gap in our knowledge is whether pathological changes in resting $^{31}$P MRS metabolite measurements are consistent with candidate models of mitochondrial regulation, in accordance with Eqn 4 (Kemp 1994). There is ample evidence that [Pi] and [ADP] are increased in, for example, mitochondrial myopathies (Taylor et al. 1994). However, we do not know whether particular disease states affect basal ATP turnover rate $Q_B$. Furthermore, we usually lack independent measurements of [TCr], which makes calculated [ADP] and $\Delta G_{\text{ATP}}$ potentially misleading (Kemp et al. 2007). Lastly, the pure ADP-model has nothing to say about [Pi], although it or course contributes to $\Delta G_{\text{ATP}}$, and computational simulation finds it has an influence around resting concentrations (Schmitz et al. 2012); unlike [ADP], though, its basal value cannot be determined solely by a mitochondrial feedback loop, as cell [Pi] must eventually be at steady state with respect to plasma [Pi] consistent with the still poorly understood kinetic properties of trans-sarcolemmal Pi transport (Kemp & Bevington 1993).

Direct effects of creatine and the role of mitochondrial creatine kinase?

There is a large literature on mitochondrial CK, its structural and functional associations with other mitochondrial and cytoskeletal components (Saks et al. 2010), and many reports of physiological and experimental changes in the creatine-sensitivity of respiration in vitro (Perry et al. 2012, Smith et al. 2004, Walsh et al. 2006, 2002). It has proved difficult to bring insights from this work to bear on the interpretation of PCr recovery. We will not discuss this here, but simply reiterate a point made earlier (Kemp 2006a,b), that the impact in vivo of effects of creatine on e.g. the ADP-affinity of respiration which are demonstrable in vitro...
Approaches to measurement of \( O_2 \) transport and consumption in vivo

Although the focus of this review is \(^{31}\)P MRS methods, brief discussion of \( O_2 \) physiology is relevant, given its relevance to muscle mitochondrial function and the availability of non-invasive probes.

Measuring cellular \( \text{PO}_2 \). As well as the feedback mechanisms abstractly summarized in Eqn 3, oxidative ATP synthesis is also influenced by cytosolic \([\text{O}_2]\) (sometimes expressed in terms of \( \text{PO}_2 \)), which is a direct kinetic influence on cytochrome oxidase activity. Eqn 3 could be generalized to accommodate this

General regulation of oxidative ATP synthesis:

\[
Q = g(X, [\text{O}_2]_{\text{cytosol}}) \quad (20)
\]

Non-invasive measurements of \([\text{O}_2]_{\text{cytosol}}\) would be useful in disentangling these effects. \(^{3}H\) MRS measurements of deoxymyoglobin concentration, appropriately calibrated (Gussoni et al. 2010) and interpreted in terms of an \( O_2 \)-disassociation curve, can estimate averaged \([\text{O}_2]_{\text{cytosol}}\) (Richardson et al. 1995, Vanderthommen et al. 2003, Carlier et al. 2006). A major contributor to the near-infrared spectroscopy (NIRS) signal is deoxyhaemoglobin (Tran et al. 1999), and an \( O_2 \)-disassociation curve could be used to estimate mean \([\text{O}_2]_{\text{capillary}}\), the driving force for \( O_2 \) diffusion into the myocyte, although in practice calibration is very difficult. NIRS can be made to discriminate deoxyhaemoglobin and deoxymyoglobin (Marcinek et al. 2003, 2004), but practical difficulties have so far precluded using this to measure the capillary and myocyte \([\text{O}_2]\) separately.

Measuring muscle \( O_2 \) content. Another way in which NIRS can probe contributions of \( O_2 \) transport to MMMF is by measurement of total muscle \( O_2 \) content (\([\text{O}_2]_{\text{muscle}}, \text{i.e. myocytes plus muscle vascular bed}\)). By conservation of mass and the Fick principle, this is related to muscle \( O_2 \) usage (\( V_{O_2} \)), blood flow and AVD (\( = [\text{O}_2]_{\text{arterial}} - [\text{O}_2]_{\text{venous}} \)) by

General \( O_2 \) balance:

\[
V_{O_2} = \text{AVD} \times \text{flow} - \frac{d[\text{O}_2]_{\text{muscle}}}{dt} \quad (21)
\]

In the maximal exercise studies discussed later, the change in \([\text{O}_2]_{\text{muscle}}\) is negligible compared to the vascular and metabolic \( O_2 \) fluxes, and \( V_{O_2} \) is directly calculable from AVD data by Eqn 21.

A different application of Eqn 21 is the use of cuff ischaemia to eliminate the contribution of \( O_2 \) inflow and outflow. Eventually, this abolishes oxidative ATP synthesis (as in Eqn 18), but in the early stages before muscle \( O_2 \) is fully depleted, Eqn 21 becomes:

Ischaemic \( O_2 \) balance:

\[
V_{O_2} = -\frac{d[\text{O}_2]_{\text{muscle}}}{dt} \quad (22)
\]

Equation 22 has been used to measure \( V_{O_2} \) in resting muscle: estimates of \( Q_R \) derived from published measurements are reviewed elsewhere (Kemp & Brindle 2012). Furthermore, a combination of \(^{31}\)P MRS (Eqns 18 and 19) and NIRS (Eqn 22) during arterial occlusion has been used to derive the \( P : O \) ratio estimate (Marcinek et al. 2004) which underpins our calculations of oxidative ATP turnover from published \( V_{O_2} \) estimates (see legend to Fig. 10; Kemp & Brindle 2012).

The methodology of Eqn 22 can also be applied using transient arterial occlusion to measure \( V_{O_2} \) during exercise and recovery (Hamaoka et al. 2007). Absolute quantitation of \( V_{O_2} \) is technically difficult (Hamaoka et al. 2007), but the rate constant of \( V_{O_2} \) measured by Eqn 22 using repeated transient arterial occlusion during recovery can be interpreted, like \( k_{\text{PCR}} \), as an index of mitochondrial function (Brizendine et al. 2013, Ryan et al. 2013).

Combining NIRS and \(^{31}\)P MRS. Intuitively, where defects in PCR recovery are mainly vascular in origin one might expect the fractional abnormality in NIRS reoxygenation kinetics to be larger than that in PCR recovery, and also the two abnormalities to correlate positively across individuals. (In contrast, a pure mitochondrial defect will slow \( O_2 \) consumption, which if vascular flow remained unchanged, would lead to faster post-exercise reoxygenation). Both these findings are observed in clinical vascular disease (Kemp et al. 2001a), and a slowing of NIRS recovery relative to PCR recovery is also reported in chronic heart failure (Kemps et al. 2010). A positive correlation between NIRS and PCR recovery kinetics is reported in type 2 diabetes (Schmid et al. 2012), which appears to suggest a major vascular component to impaired ‘mitochondrial’ function, interesting in view of the debate on mitochondrial dysfunction and insulin resistance discussed in (Kemp & Brindle 2012) and below (in the section entitled ‘Published data on clinical abnormalities in MMMF. Type 2 Diabetes’). A similar correlation between deoxymyoglobin and PCR recovery kinetics (Duteil et al. 2004, Carlier et al. 2006, Ryan et al. 2013) appears to carry the same implication in normal controls. A simple model of this relationship has been proposed to distinguish contributions of impaired \( O_2 \) delivery and ‘intrinsic’ mitochondrial dysfunction to slow PCR recovery in chronic kidney disease (Kemp et al. 2004).
Measuring muscle perfusion. Although post-exercise recovery kinetics of \([O_2]_{\text{muscle}}\) (Willcocks et al. 2010), easily studied by NIRS and relatively independent of calibration issues, are sensitive to abnormalities of vascular \(O_2\) delivery (Pipinos et al. 2000, Kemp et al. 2001a), quantitative analysis is hampered by lack of knowledge of relevant variables. Furthermore, even big differences in absolute \([O_2]_{\text{muscle}}\) imply only small fractional imbalances between \(O_2\) inflow and \(O_2\) outflow-plus-usage (Kemp 2005a). The potential utility of simultaneous measurement of muscle perfusion is obvious, but this poses major technical problems. Although there are MR-based approaches, notably arterial spin labelling (ASL), movement artefacts make these almost impossible in exercising muscle, and post-exercise perfusion measurements are an uncertain guide to in-exercise perfusion rates. One interleaved ASL and \(^{31}\)P MRS study reported a relation between \(PCr\) recovery and post-exercise tissue perfusion ( Carrier et al. 2006), which is broadly consistent with the idea that vascular \(O_2\) delivery exerts some influence on mitochondrial function during recovery in normal muscle.

MR spectroscopic localization

The \(^{31}\)P MRS studies to be discussed here generally use simple surface-coil localization, and rely on a ‘fair-sample’ principle that necessarily neglects the important issue of heterogeneity (Cannon et al. 2013). Single voxel techniques have until recently (Meyerspeer et al. 2012) required an unacceptable trade-off with time resolution. This is even more true of chemical shift imaging methods (Pesta et al. 2013), although the problem can be partially avoided with a gated methodology using multiple repetition of a very small exercise perturbation (Slade et al. 2006, Forbes et al. 2009b). Recently, a specialized imaging sequence has been devised which gives good spatial and temporal resolution of changes in \(PCr\), at the cost of the ability to measure pH (Parasoglou et al. 2013).

Validation of ‘MRS-based measures of mitochondrial function’

Principles of validating MMMF

Magnetic resonance spectroscopy-based measures of mitochondrial function reflect a system property with a number of contributing factors: these include the number of mitochondria, the amount and activity per mitochondrion of all the respiratory chain components and the enzymes of fat and carbohydrate oxidation, the vascular supply of \(O_2\) and its diffusion across the capillary wall and through the myocyte to the mitochondria (Kemp 2004). The empirical validity of any MMMF might be addressed in several ways. Most straightforwardly, in states where intrinsic mitochondrial function or mitochondrial numbers change (such as training, ageing, primary mitochondrial diseases and secondary causes of mitochondrial dysfunction), does an MMMF change detectably in the right direction? Further, does it correlate, across a range of such states, with other relevant measures? Correlations of MMMF with \(ex vivo\) measures (such as respiration rate in skinned fibres or isolated mitochondria) would be expected where much of the primary physiological variation or abnormality is mitochondrial, e.g. training, ageing and primary mitochondrial disease), but not in e.g. peripheral vascular disease, where the lesion is mainly extramitochondrial. MMMF would be in general be expected to correlate with \(in vivo\) measures such as whole body \(V_{O2\text{max}}\), although whole body measurements can be limited by factors that do not necessarily affect skeletal muscle metabolism. In clinical conditions affecting muscle mitochondrial function, whatever the pathophysiology, correlations of MMMF with \(V_{O2\text{max}}\) would be expected where the muscle sampled by \(^{31}\)P MRS is typical of a sufficiently large mass of muscle.

It is interesting to ask whether an observed \(x\)% decrease in an MMMF in some disease or physiological state can be quantitatively explained by an observed \(y\)% decrease in, e.g. mitochondrial content, or in activity of a particular mitochondrial component, or of some extramitochondrial parameter such as capillarity or capillary-myocyte diffusion parameters. However, this depends on metabolic control principles not yet worked out for any particular case. Moreover, data are very sparse.

The most stringent test of a claimed absolute MMMF is whether it gives values similar to other measures, such as \(V_{O2\text{max}}\) appropriately expressed for the same muscle volume, and \(ex vivo\) measures of mitochondrial maximal ATP synthesis fluxes appropriately extrapolated back to \(in vivo\) conditions (Rasmussen & Rasmussen 2000). We will do this in Figure 11. As we will discuss, this is made difficult by formidable technical issues, a consequent lack of directly comparable data, and gaps in our understanding of some pertinent physiology.

Published data on experimental changes and normal variation in MMMF

Animal models. Manipulation of mitochondrial content in rat by training and chemical thyroidectomy results in a linear correlation between MMMF (specifically, \(k_{PCr}\)) and muscle citrate synthase activity.
Manipulations of inspired O\textsubscript{2}. Here, correlations would only be expected, if at all, with whole-body (or whole-limb) measures: in trained subjects, hypoxia decreases, and hyperoxia increases, MMMF (Haseler et al. 1999) as it does limb V\textsubscript{O2max} (Richardson et al. 1999); by contrast, in sedentary subjects, although hypoxia decreases MMMF, hyperoxia does not increase MMMF, indicating that O\textsubscript{2} supply is not limiting in normal untrained muscle (Haseler et al. 2004). These experiments have not enabled a quantitative evaluation of the contribution of cellular PO\textsubscript{2} to Eqn 20 above, although the observation of a relationship between PCr recovery kinetics and mean [O\textsubscript{2}]	extsubscript{cytosol} measured by \textsuperscript{1}H MRS of deoxymyoglobin (Haseler et al. 1999) illustrates how these influences play out.

Published data on patients with abnormalities in MMMF

In studies on patients (Kemp et al. 1993b), correlations might be expected with whole-body or ex vivo measures, depending on the pathophysiology. In any clinical condition reducing physical activity, detraining effects can contribute to reduced MMMF as well as whole-body fitness measures, making necessary careful selection of activity-matched controls in clinical \textsuperscript{31}P MRS studies. Here, we briefly discuss the findings in some important disease groups.


Diseases impairing O\textsubscript{2} delivery. Magnetic resonance spectroscopy-based measures of mitochondrial function are also abnormal in peripheral vascular disease (Kemp et al. 1995, 2001a, 2002a, Kemp 2004), where muscle perfusion is reduced, and in congenital heart disease (Adatia et al. 1993, Cordina et al. 2013), where blood O\textsubscript{2} content is reduced. In these conditions the abnormal PCr recovery kinetics could in principle be modelled in terms of Eqn 20 and the low cell [O\textsubscript{2}]	extsubscript{cytosol} resulting from impaired O\textsubscript{2} delivery; what little evidence there is in peripheral vascular disease suggests that this plays out as a down-scaling of the Q-X relationship resembling that seen in intrinsic mitochondrial disease or defect (Kemp et al. 1995, 2001a, 2002a, Kemp 2004), and in experimental hypoxia (Haseler et al. 1999). Given a suitable measurement of exercising muscle PO\textsubscript{2} in, say, peripheral vascular disease, where a conventional calculation according to Eqn 9 will reveal a reduced Q\textsubscript{MAX}, we might in principle measure a reduced [O\textsubscript{2}]	extsubscript{cytosol} and use this to derive a Q\textsubscript{MAX} ‘corrected’ for cellular hypoxia

\[
Q_{\text{MAX}} \doteq g(X_{\text{MAX}, \text{corrected}}[O_2]_{\text{cytosol}}) \quad (23)
\]

which could reveal accompanying abnormalities in intrinsic mitochondrial function, or even partly-compensatory supranormal mitochondrial function. Even given relevant PO\textsubscript{2} measurements, however, we lack enough knowledge of the relevant relationships to make this assessment (Kemp 2004).

Type 2 diabetes. The possible role of abnormalities of muscle mitochondrial function and lipid metabolism in the pathophysiology of insulin resistance in general, and Type 2 diabetes specifically, is much-debated: two recent reviews examine the possible mechanisms in detail (Coen & Goodpaster 2012,
Watt & Hoy 2012). In brief, studies using both in vivo and ex vivo measurements have provided evidence for and against a reduced muscle mitochondrial capacity in Type 2 diabetes. Reduced MMMF have been reported in type 2 diabetic patients, relative to appropriate controls, in some (Scheuermann-Freestone et al. 2003, Schrauwen-Hinderling et al. 2007, Meex et al. 2010, Baipeyi et al. 2011) but not all (De Feyter et al. 2008, Trenell et al. 2008) studies, and even when group differences are observed correlation with insulin resistance is poor (Baipeyi et al. 2011). Abnormal MMMF are also reported in to accompany insulin resistance in obese adolescent girls (Slattery et al. 2014), but not young men of low birthweight (Brons et al. 2008). Improvements in MMMF accompany the metabolic improvements induced in Type 2 diabetes by 12 weeks exercise training (Meex et al. 2010), but not by 8 weeks of increased daily walking (Trenell et al. 2008) or by rosiglitazone therapy (Schrauwen-Hinderling et al. 2008). Two rare diseases characterized by insulin resistance, primary congenital insulin resistance (Sleigh et al. 2011) and congenital lipodystrophy (Sleigh et al. 2012), show abnormal MMMF relative to controls matched for age, gender, BMI and fitness, which must be a consequence or an accompaniment of insulin resistance, since it cannot be its cause in these patients. For present purpose, the important point is that while muscle mitochondrial function assessed by localized 31P MRS studies of post-exercise PCr recovery tests a component of the overall cardiovascular/respiratory/muscle system whose performance is assessed by conventional whole-body fitness testing, these are not identical concepts (Kemp 2004), or are they anywhere near 100% correlated across individuals (Edwards et al. 2013). 31P MRS focuses on processes within the muscle.


Computational insights into interactions between pH, ADP and PCr recovery

Relationships between end-exercise pH and metabolite concentrations

There has long been interest in the effect of end-exercise pH (pHe) on PCr recovery kinetics (Figs 5–7). A low end-exercise pHe is associated with slowing of PCr recovery, best expressed for present purposes as a decrease in kPCr (Arnold et al. 1984, Bendahan et al. 1990, Iotti et al. 1993, Kemp et al. 1994a, Lodi et al. 1997a, Roussel et al. 2000, van den Broek et al. 2007, Layec et al. 2013d). This can be explained in terms of the interaction between oxidative ATP synthesis, cellular pH homeostasis and the CK equilibrium (Kemp 2004), without necessarily assuming any direct effects of low pH on mitochondrial function (Kemp et al. 1997, Lodi et al. 1997b). Whether there are nevertheless such effects is considered below (Figs 6a and 9c).

A technical limitation is that there are no in vivo ‘pH-clamp’ experiments in muscle physiology: we exercise the muscle in various ways and work with the end-exercise states achieved. Another limitation is that effects of pHe on PCr recovery will depend on the accompanying [ADP], that is, on the relationship between pHe and [PCr]E. This in turn depends on events in the preceding exercise period which are straightforward in principle: integrated over the whole course of exercise, the total glycolytic production of H+, less H+ lost from the cell, must equal the (pH-dependent) sum of the H+ buffered in the cytosol and the H+ ‘consumed’ by PCr breakdown (Kemp 2005b, Kemp et al. 2006). There are two special cases. In mainly oxidative exercise, the small glycolytic H+ production roughly balances the consumption of H+ by PCr breakdown (Eqn 6), pH therefore changes very little and there is negligible H+ efflux. In ischaemic exercise, there is no H+ efflux or oxidative ATP synthesis, and so there is a straightforward relationship (Eqns 18, 19) between changes in pH and PCr and the integrated glycolytic ATP production (which is 1.5 × Δ[laactate]) (Kemp 2005b); however, the balance between the changes in pH and [PCr], and consequently [ADP], by (Eq 1), is a function of ‘glycolytic setting’ (Kemp et al. 2001b) in a sense which even given recent advances in computational modelling of glycolysis (Vinnakota et al. 2006) is not easy to define. In the more general case where both glycolytic and ATP synthesis are important there are no useful simplifications. In what follows, we simply regard end-exercise state as given.
We will elucidate some effects of end-exercise state and changes in mitochondrial function and pH homeostasis using a simple simulation to interpret (Kemp et al. 2010) data from $^{31}$P MRS quadriceps exercise-recovery experiments which examine these relationships in detail (van den Broek et al. 2007). This is not intended to be a detailed computational model, or is it claimed to yield any kind of optimal fit. It will, however, illustrate some important interactions between these aspects of the physiology and their implications for the quantitative interpretation of $^{31}$P MRS recovery data.

**A simple model of recovery from exercise**

The end-exercise/initial-recovery rate of H$^+$ efflux ($E_R$), which can be estimated from pH and PCr recovery data (Kemp et al. 1994b, 1997) (Eqn 8) lumps together several different processes of ion transport, and its pH-dependence likely reflects a fundamental cellular physiological setting. In van den Broek et al. (2007) a relationship was found, across individuals, between the individual pH-sensitivity of H$^+$ efflux measured as the apparent rate constant $\lambda = -(dE_R/dpH_b)_{\text{mean}}$ and the between-experiment slope of $\tau_{\text{PCR}}$ against end-exercise pH, $(d\tau_{\text{PCR}}/dpH_b)_{\text{mean}}$ suggesting that intersubject differences in the pH-dependence of $\tau_{\text{PCR}}$ are related to differences in cellular pH homeostasis. As we shall see, purely verbal argument about these interactions risks circularity. However, a simple modelling approach (with ADP-dependent oxidative PCr resynthesis and pH-dependent H$^+$ efflux), accounts qualitatively for the main $^{31}$P MRS features of post-exercise recovery (Styles et al. 1992); for example, ADP recovers faster than PCr because only the initial phase of PCr resynthesis requires a substantial suprabasal oxidative ATP synthesis, the later phase being mainly an adjustment of PCr to the recovering pH (Arnold et al. 1984). It will emerge that this model provides a ‘systems’ perspective which avoids some conceptual problems, and indeed reproduces the experimental findings in some detail.

The simulation assumes ADP-controlled oxidative ATP synthesis driving PCr resynthesis: from Eqns 7 and 11

$$\text{ATP turnover: } \frac{d\text{PCr}}{dt} + Q_b = \frac{Q_{\text{MAX}}}{[1 + (K_m/\text{[ADP]})^\gamma]}$$

PCr resynthesis is accompanied by H$^+$ generation with a (negative) stoichiometric coefficient $\gamma$ which depends (Kushmerick 1997, Kemp et al. 2006) on the pH-dependent difference in charge [more precisely, in ‘bound’ H$^+$ (Vinnakota et al. 2009)] between the accumulating PCr and the near-stoichiometrically declining Pi (Eqn 8). Cytosolic pH recovers back to resting values because this H$^+$ generation is opposed by net H$^+$ efflux, which we assume for simplicity to be linearly pH-dependent: H$^+$ efflux rate $= \lambda (pH_b - pH)$. The resulting pH change is proportional (from Eqn 8) to the difference between these rates:

$$\text{pH homeostasis: } \frac{dpH}{dt} = \left( (H^+ \text{efflux rate}) \right) / \beta_T$$

where $\beta_T$ is the cytosolic buffer capacity ($\beta_T$) (Kemp et al. 2001b, Kemp 2003b). The simulation proceeds by incremental solution of Eqs 24 and 25. For comparison with the published data, parameters in the simulation follow those in the analysis (van den Broek et al. 2007).

**Effects of end-exercise pH and H$^+$ efflux setting**

Figure 5(a) compares relationships between [PCr]$_E$ and pH$_E$ in the conditions which will be simulated here and in the data (van den Broek et al. 2007) with which the simulation will be compared. Figure 5(b) shows the effect of changing the setting of H$^+$ efflux. It is known that pH and PCr recovery kinetics correlate across individuals (Chen et al. 2001), which seems intuitive: high H$^+$ efflux causes faster pH recovery; for given [ADP], a higher pH requires a higher [PCr]; this means faster PCr recovery. The difficulty is that [ADP] recovery does not follow a fixed recovery time course to which [PCr] adjusts, and there are interactions outside the posited causal chain. If faster pH recovery speeds PCr recovery, faster PCr resynthesis would require increased mitochondrial drive by [ADP] (which would tend, via CK, to oppose the recovery of [PCr]), and entail increased H$^+$ generation (tending to oppose pH recovery). In the simulation, increasing $\lambda$ does indeed accelerate recovery of both pH and PCr (Chen et al. 2001, van den Broek et al. 2007) with little effect on ADP recovery. The point is that these are all system co-responses, not causes and effects. Simulation shows, as intuition may not, that in the overall system response these countervailing effects are small. The kinetics of the error signal ($T_{\text{ADP}}$) are therefore stable (Styles et al. 1992) against changes in a parameter ($\lambda$) not part of the mitochondrial transfer function.

Figure 5(c) shows the effects of changing pH$_E$ in the case which most closely resembles the data (van den Broek et al. 2007), where [ADP]$_E$ rises with decreasing pH$_E$. The reason why decreasing pH$_E$ slows PCr recovery (i.e. raises $\tau_{\text{PCR}}$) with little effect on $\tau_{\text{ADP}}$, is that feedback-signal kinetics are insensitive (Styles et al. 1992) to initial-state change not affecting initial $d\text{PCr}/dt$, while PCr recovery is slowed by the system properties of the CK equilibrium. Figure 5(d)
summarizes these effects, showing that the pH_E-dependence of PCr recovery is sensitive to efflux setting, while ADP recovery is relatively insensitive. No more is claimed here than that the fit to the data in (van den Broek et al. 2007) is reasonably good. Detailed analysis shows that these predicted λ-dependences are fairly robust, being relatively insensitive to alternative assumptions about mitochondrial control (e.g. assuming NET-regulation rather than the ADP-model used here) or about the pH-dependence of H⁺ efflux [e.g. assuming a degree of non-linearity or time dependence (Kemp et al. 1997)]. The predicted λ-dependences are also relatively independent of potential correlations between the model parameters; for example, in a subject with a higher proportion of glycolytic fibres, one might see higher λ in correlation with a less-acid pH_E [for which there is some evidence (Kemp et al. 1997)], or else with lower Q_MAX [which has not been noted (Kemp et al. 1997, Lodi et al. 1997a), although not much studied]. The range of potential relationships is constrained by realistically observable initial conditions as much as by metabolic constraints operating during recovery itself.

Effects of altered mitochondrial function

In the application of 31P MRS to assess mitochondrial function, much attention has been given to how quantify this, and in particular how to correct for the effects of pH change. The normal-subject data set analysed here allows us to approach this. Figure 6(a) shows how the PCr recovery rate constant varies with pH fall in exercise, making no distinctions between different subjects and different work rates. Figure 6(b) shows that the inferred ADP-model values of Q_MAX show a small but significant decrease with end-exercise pH. We present the whole-literature equivalent of this plot later (in Fig. 9c).

Although we have no examples of clinical defect or experimental manipulation of mitochondrial capacity in this data set, the normal variation it contains (visible against the y-axis in Fig. 6b) allows us to test the quantitative relationship between some different MMMFs. Figure 6(c,d) shows some simulated effects of altered mitochondrial capacity (Q_MAX), comparing this with the variability of Q_MAX among the (normal) subjects studied. Figure 6(c) shows the rate constant of PCr (k_PCr=1/τ_PCr) (a relative MMMF) as a function of Q_MAX (an absolute MMMF, and on this model closer to the underlying physiology). Figure 6(d) shows the same relationship for the apparent rate constant of ADP recovery (k_ADP=1/τ_ADP): it is not usual to quantify ADP recovery in this way, but direct comparison with k_PCr is instructive. The theoretical lines (calculated for assumptions of ‘normal’, ‘low’ and ‘high’ efflux setting (see key to Fig. 6c) are compared with the data points from the individual subjects. The expected positive slopes are seen, although at low pH_E the Q_MAX-slope of k_PCr is lower, and that of k_ADP is slightly higher than predicted. As expected the efflux setting makes more difference at low pH_E.

The sensitivity of ADP recovery to mitochondrial function makes intuitive sense on the ADP-model. Any impairment of mitochondrial function results in higher [ADP] at any given V_{PCR}, and this must mean that ADP recovery is slowed (Styles et al. 1992). The workings of the feedback loop are modified by pH, which defines the [PCr] required for a particular [ADP] (by Eqn 1). Thus, an increase in the H⁺ efflux setting, as in mitochondrial myopathy (Taylor et al. 1994), ameliorates the slowing of PCr recovery, as PCr adjusts to more rapidly recovering pH, the slightly higher rate of late-phase PCr recovery requiring a slightly higher [ADP] (Styles et al. 1993). Moreover, simulation of the effects of changing [PCr]E, pH_E or Q_MAX suggest that variation in λ is the only plausible cause of the positive correlation between pH and PCr recovery (Chen et al. 2001); so when pH recovery is fast in mitochondrial myopathy (Arnold et al. 1985, Taylor et al. 1994) the reason must be increased H⁺ efflux (Chen et al. 2001); conversely a slow PCr recovery could be compatible with normal mitochondrial function if accompanied by slow pH recovery (Chen et al. 2001).

In summary, these results support the traditional position: PCr kinetics reflect mitochondrial function, although their pH-dependence can complicate interpretation; ADP recovery kinetics are more robust in this respect, although less often reported (presumably because calculation of [ADP] requires pH data which is often unreliable in early recovery, when [Pi] falls very low).

Possible direct effects of pH on mitochondrial function

There has been some interest in the idea that cytosolic pH has a direct influence on mitochondrial function, independent of the CK equilibrium: in the present terms, this means a pH-dependent Q_MAX (Fig. 6b). In ex vivo arterially perfused cat soleus, experimental respiratory acidosis both ‘left-shifts’ and decreases the apparent maximum of the relationship of V_{O2} to both [ADP] and ΔG_{ATP} (Harkema & Meyer 1997). Acid pH also inhibits respiration in isolated skeletal muscle fibres (Walsh et al. 2002). The importance of this is difficult to establish in vivo, because it is difficult to define, e.g. a Q/[ADP] relationship and then the effect of pH upon it: a series of Q and [ADP] pairs at various pH values might...
be seen as lying on one Q-[ADP] curve, or on a pH-dependent family of curves.

When we come later to discuss parallel activation, it will be useful to make this kind of argument more abstractly: suppose we have good reason to believe that the feedback system matching ATP supply to demand works via a signal X (Eqn 3), for example, a sigmoid function of [ADP] as in Figure 4(b); our confidence is based on experiments in vivo where an experimental rise in X increases Q, other things being equal, and data from a variety of experimental and physiological manipulations in which the relationship holds (in general, we cannot manipulate X directly in vitro). If we now find data in vivo where Q ≠ f(X), for example, because X has increased but Q has decreased relative to some control situation, then we are forced to assume some other factor, outside the X-feedback loop. If the pH is also lower in the new data point, this can reasonably be proposed as a direct effect of cellular acidosis. One such case (Forbes et al. 2009a) is calf muscle in (Walter et al. 1997), where extending a period of maximal exercise results in a higher [ADP] with a bigger pH fall, and a lower \( V_{PCr} \); with the present assumptions (and in fact with any reasonable assumption about Km and n, since both [ADP]_E values are very high in this study), this lower pH is therefore associated with a decreased \( Q_{MAX} \). Another result cited in support of direct pH effects (Forbes et al. 2009a) is in tibialis anterior muscle (Jubrias et al. 2003), where ’burst’ exercise is associated with a smaller pH fall than sustained exercise, a higher [ADP] and a higher \( V_{PCr} \); on any reasonable assumptions this means a higher \( Q_{MAX} \) with the smaller pH change. The same effect is not seen in the parallel studies on first dorsal interosseous muscle in this paper (Jubrias et al. 2003), where [ADP] is very high and \( V_{PCr} \) very similar in both burst and sustaining exercise.

The data set of (van den Broek et al. 2007), interpreted as in Figure 6(b), show evidence of a slight decrease in \( Q_{MAX} \) with decreasing pH which is not sensitively dependent on the choice of parameters. (As we will see later in Fig. 9c, this is not apparent across the whole literature, but it may be that subtle effects have gone unnoticed).

The present simulation approach throws some light by considering how pH-dependence of \( Q_{MAX} \) might interact with the CK-mediated effect of pH modelled in the foregoing. Simulations (not shown) reveal that, as expected, the greater the assumed (negative) slope of \( Q_{MAX} \) against pH (i.e. against pH throughout recovery), the greater \( t_{PCr} \) at significantly subbasal pH_E, and that this effect adds to the \( t_{PCr} \)-lengthening effects of acid pH_E modelled in Figure 5(c). A hypothetically pH-dependent \( Q_{MAX} \) has little effect on \( t_{ADP} \) for near-resting pH_E, as one would expect, but actually rather small effects on \( t_{ADP} \) even at larger changes in pH_E. It appears that although an independent pH-dependence of \( Q_{MAX} \) cannot be ruled out, it is not necessary to explain the pH-dependence in the dataset of (van den Broek et al. 2007). The broader point is that consensus on whether there are direct pH effects of this kind will have to await consensus on the correct mode of analysis (with the clear exceptions noted above).

Other implications for mitochondrial control

We now consider some more general effects of these interactions. The present approach takes V-[ADP] as causally fundamental in the feedback control of Q, yet PCr recovery kinetics depend on the shape of V-PCr (i.e. the relationship between the time-derivative and \([PCr]\)), or in this case the relative fall in \([PCr]\), in which each trajectory implies a PCr kinetics. Figure 7(a) shows relative oxidative ATP synthesis \( Q/Q_{MAX} \) (the primary relationship assumed here) as a function of [ADP] under various assumptions of Km and n. Assuming constant near-resting pH (which seems at first sight a reasonable approximation to recovery from near-resting pH_E), Figure 7(b) shows the \( Q/Q_{MAX} \) as a function of a function of \([Cr]\), scaled to \([TCr]\). Figure 7(c) shows the similar plot of \( Q/Q_{MAX} \) against \( \Delta G_{ATP} \), a striking feature of which is that increases in Km for ADP translate into rightward shifts, while increases in n steepen the plot [given constant pH, the midpoint slope of \( Q/Q_{MAX} \) against \( \Delta G_{ATP} \) is directly proportional to n (Kemp 2009)].

Figure 7(a–c) have in common that they plot a rate against something which may well be causally important in its regulation (Fig. 1). The relationship to \([Cr]\) (Fig. 7b) has an additional significance, because the y-axis is related to the derivative of the x-axis, and thus the x-axis is related to the integral of the y-axis. This means that every trajectory through this space implies a shape of PCr kinetics: if it is linear the kinetics are exponential, with \( t_{PCr} \) inversely proportional to its slope: this is case for Km = 50 \( \mu \)M (case 1). It can be seen that the other cases in Figure 7 (i.e. lower or higher Km values in cases 2 and 3, and the sigmoid relationship in case 4) will not correspond to monoexponential kinetics under the constant-pH assumption. This is a difficulty: we have seen that some cooperativity is essential for a single V-[ADP] relationship to cover the dynamic range, and this leads to a sigmoidal V-[PCr] (Fig. 7b). Yet, monoexponential kinetics are routinely seen unless pH is appreciably more acid than assumed here. Figure 7(d) shows that part of the answer lies in the fact that pH is (of course) not exactly constant, even when there has been little...
acidiﬁcation during exercise. It shows the three pH-grouped end-exercise states and the curves corresponding to their simulated recovery, superimposed on the full-range curve implied by sigmoid ADP-dependent Q at hypothetical constant resting-pH, and for comparison a notional exponential-time-course recovery from full PCr depletion. For the low-pH data set, when the ﬁrst 50% recovery of [PCr] has occurred, Q is smaller than 50% of its initial value, i.e. what it would be in the linear case; conversely, when Q has recovered to half its initial-recovery value, PCr has not yet recovered by 50%. We therefore expect the PCr halftime, and therefore also τ_{PCr}, to be longer than in the linear case with the same initial Q and [PCr]E. This is, broadly, what we observe. The kinetic simulation, by accounting for small changes in pH that result from transient acidification in early recovery (due to H⁺ production by PCr resynthesis) followed by pH recovery (driven by net H⁺ eﬄux) ‘ﬂattens out’ the trajectory from end-exercise back to the resting state, giving something closer to monoeponential kinetics.

Thus, a simple model of mitochondrial control and H⁺ eﬄux explains much about post-exercise PCr and ADP recovery in relation to pH. It explains why between-individual variations in H⁺ eﬄux dominate variation in τ_{PCr} with pH_{E} (van den Broek et al. 2007b), but cautions that the slope of this relationship, and the effects on τ_{ADP} will depend on how [PCr]E (and therefore [ADP]E) varies with pH_{E}. It also resolves an apparent paradox about the steady-state control relationships of ATP synthesis and the kinetics of PCr recovery. Simple modelling can thus avoid some ambiguities of verbal argument about an interacting system, and provides a bridge to more detailed mechanistic treatments of mitochondrial control (Jeneson et al. 2009, Schmitz et al. 2011).

Analysis of published data from ³¹P MRS studies

Given the absence of deﬁnitive experiments, the paucity of large experiments able to examine detailed relationships between physiological and structural/biochemical/genetic measurements, and the diﬃculty of combining MR-based measurements with invasive physiological measurements (to be discussed below in Figs 10–12), much can be learned by collating published data in suitable analytical form; this approach has been applied to MR quantiﬁcation of absolute concentrations (Kemp et al. 2007a) and Pi–ATP exchange as a measure of mitochondrial function (Kemp 2008a, Kemp & Brindle 2012). To minimize the effects of minor variations in quantiﬁcation of resting metabolites etc., a common approach will be used (described in the legend to Fig. 8).

³¹P MRS studies of quadriceps muscle

Figure 8 shows results from quadriceps, the muscle which is the source of the example data in Figures 2–4, and the most used in the invasive experiments discussed below (in Figs 10–12). The results shown are largely single mean values from the normal-muscle studies cited in the ﬁgure legend. Two data sets are picked out (see legend) because they yield several data points at diﬀering [ADP] values: although this was not the authors’ original intention, these are particularly useful in showing that Q has a strong tendency to ﬂatten oﬀ at high [ADP], as the standard model assumes. An apparent exception is one study (Jeneson & Bruggeman 2004), arrowed in Figure 8, to which we return in Figure 12. With this exception, there is reasonable consistency around the Q–[ADP] line in Figure 8(a) (cf Fig. 4b), and around the Q–ΔG_{ATP} line (not shown). The collected Q–PCr data in Figure 8(b) show the eﬀects of the relationship between the k_{PCr} and pH_{E} which is shown in Figure 8(d). The relationship between k_{PCr} and the end-exercise fall in [PCr] shown in Figure 8(c) contains the mathematical relationship between those variables and initial V_{PCr}.

Comparison between muscles

Figure 9 shows in addition data obtained from three other muscles much studied by ³¹P MRS: calf muscle (soleus and/or gastrocnemius), tibialis anterior and ﬁnger ﬂexor muscles (usually ﬂexor digitorum superﬁcialis). Figure 9(a) shows the relationship of oxidative ATP synthesis rate to [ADP]E, and Figure 9(b) the relationship of k_{PCr} to ΔpH_{E}. The collected apparent maximal rates in Figure 9(c) shows no obvious overall direct eﬀect of pH. Directly comparing the apparent maximal rates in Figure 9(d) suggests no overall diﬀerences between the four muscles, despite such diﬀerences as the generally larger pH change in studies of ﬁnger ﬂexors and calf muscle (which can be seen in Fig. 9c). This conclusion is reinforced by Figure 9(e), which summarizes the results of the few published comparisons between muscles in a single study.

The possible inﬂuence of the mode of exercise

Figures 8 and 9 do not distinguish between modes of exercise (isometric, shortening and lengthening), mechanical output (force or power), or ramp vs. incremental design, length of exercise, or duty cycle (contraction vs. relaxation in repeated exercise). There are many ways in which these might inﬂuence muscle...
ATP turnover, but they have rarely been systematically studied by $^{31}$P MRS. Inspection at least reveals no major effects on the Q-ADP relationship, which is consistent with a simple feedback control model, at least within this dynamic range. It would be premature to take occasional reports of differences between exercise modes (Crowther & Gronka 2002) as firm evidence of altered parallel activation. In this context, a major area of uncertainty is the possible effect of different patterns of muscle fibre recruitment on post-exercise PCr recovery. One case where recruitment patterns are certainly different is direct electrical stimulation. Figure 9 shows separately (grey symbols), data from electrically stimulated muscle. There appears to be a tendency for these to have lower values of Q (Fig. 9a) and $Q_{\text{MAX}}$ (Fig. 9c,d) than voluntary exercise studies, which might be expected on the basis that electrical stimulation activates more glycolytic fibres than voluntary exercise. Alternatively, vascular perfusion might be lower. If these possibilities could be excluded one might speculate that the difference reflects reduced parallel activation in the absence of voluntary activation. However, the one reported direct comparison (Vanderthommen et al. 2003) shows no such difference.

Taken together, the published data thus give no obvious support to the uses of any particular mode of exercise in the $^{31}$P MRS assessment of PCr recovery kinetics.

**Directly measured oxygen consumption in exercising quadriceps**

Another approach has been the invasive measurement of muscle $V_{O_2}$ by AVD methods, most of which has been done in quadriceps. Again, a common approach to the data will be used (Fig. 10).

**Published $V_{O_2}$ data from in vivo studies**

Using AVD methods, (Mortensen et al. 2008) directly compared one-legged knee extension (KE) and two-legged cycle exercise (CE), and found that $V_{O_2}$ (l min$^{-1}$) as a function of power output is essentially the same in both: the data are redrawn in the inset in Figure 10(a), while the main panel shows also data from many published studies of either KE or CE, in which the same relationship can be seen. Because of the different mass of exercising muscles involved, the relationship between $V_{O_2}$ per l muscle and power output is strikingly different (Mortensen et al. 2008): Figure 10(b) shows this for estimated oxidative ATP synthesis rate (calculated from $V_{O_2}$), again with direct comparison data from (Mortensen et al. 2008) in the inset, and data from a variety of studies in the main panel. Considering only maximal-exercise data points from these studies, the implication is a much higher $Q_{\text{MAX}}$ in KE than CE (Fig. 10c): this difference (usually expressed in terms of $V_{O_2}$) is usually explained in terms of ‘system’ factors such as vascular limitations (Mortensen et al. 2008) although detailed mechanisms are not clear. Results for arm CE (see legend to Fig. 10) are rather similar to leg CE.

**Extrapolations from ex vivo data**

Figure 10(d) summarizes data from ex vivo studies of isolated mitochondria estimating maximum rates of $O_2$ consumption or ATP synthesis (here expressed as ATP synthesis), back-calculated as far as possible to the in vivo situation. Again, the striking difference between these rates and those obtained in maximal KE is attributed broadly to system factors, sometimes summarized by the idea of ‘parallel’ activation, although detailed mechanisms are unknown (Tonkonogi & Sahlin 1997, Rasmussen & Rasmussen 2000).

**Comparing $^{31}$P MRS and AVD data**

**Model-based extrapolations from AVD data**

Comparing extrapolated $^{31}$P MRS rates from submaximal exercise (Fig. 4) to actual AVD-derived rates from maximal exercise (Fig. 10c) is probably not valid, because in general the maximally exercising muscle is (as we shall see) not metabolically ‘flat out’ – maximal exercise does not mean complete PCr depletion. Instead, we should probably extrapolate $V_{O_2}$ the same way in the maximal exercise case, to answer for AVD studies the $^{31}$P MRS’ question: how fast would oxidative ATP synthesis be if the presumed driving signals were at maximal values? It is obvious that this makes assumptions about other aspects of the physiology: notably, that $O_2$ is not limiting (or rather, not more limiting in the maximal-exercise case than in the submaximal; Kemp et al. 2002b, Kemp 2004). These issues may only be resolved when we have a computational framework which can account for the whole system, lung-to-respiratory-chain. Here, in Figure 11, we simply put the two kinds of measurements, $^{31}$P MRS and AVD, on the same pragmatic footing (Figs 11 and 12).

There are severe technical limitations. There is only one reported study combining $^{31}$P MRS measurements of [PCr], pH and [ADP] with parallel AVD measurements of $V_{O_2}$ in KE (Richardson et al. 2002), but there are a few KE studies combining needle biopsy metabolite measurements with AVD. These are plotted in Figure 11(b,c) together with the one study in which needle biopsy and AVD have...
been combined in CE (Stellingwerff et al. 2006). Assuming biopsy and 31P MRS report technically comparable fractional changes, there is an even larger discrepancy between the various sets extrapolated values, whether this is done assuming the ADP-model (compare right-hand panels of Fig. 11a and b), the linear model (compare Fig. 11c and e) or the NET-model (not shown). The inset Figure 11(d) compares the $Q_{\text{MAX}}$ estimates by the linear model with those of the ADP models: the former are larger except for severe exercise.

To sum up, the comparisons which have been made: in AVD studies, the absolute rates in maximal KE are considerably higher than in maximal CE (Fig. 10c); the rates in AVD maximal CE studies are, as it happens, quite close to the rates extrapolated to in vivo conditions from ex vivo studies (Fig. 10d), and so the rates in AVD maximum KE studies are much higher than those. The absolute rates in 31P MRS studies (Figs 8a and 11a) are generally similar to those in AVD maximum CE studies (Fig. 10c), but much smaller than in AVD maximum KE studies (Fig. 10c). When the relationships between these rates and the changes in [ADP]$_E$ are compared on the same basis, the implied maximum rates are substantially higher for AVD KE studies (Fig. 11b) than for the 31P MRS studies (Fig. 11a); the one AVD CE study for which biopsy data are available appears to resemble the 31P MRS studies. Note that power output data, for comparison with Figure 10(b), are almost never available in MR experiments, which often use home-built ergometers and/or isometric exercise for which power outputs are not defined. One reason why these common-extrapolated values are so different is that the biopsy results in maximal KE do not show ‘maximal’ PCr depletion: this is not surprising, as this would bring problems of very high [ADP] (such as inhibition of ATPases), but here we draw attention to the implications for mitochondrial regulation. To a first approximation, what we see is rather similar results (in terms of absolute rates, size of [PCr] and [ADP] changes, and consequently implied maximum rates) between 31P MRS studies (where exercise is usually limited approximately to the quadriceps), and CE (where the exercising muscle volume is the whole of one or two legs, depending on the set-up); both these data sets seem consistent with the ex vivo extrapolations. The results in AVD KE studies (where exercise is also limited to the quadriceps, but at a higher intensity than in the 31P MRS experiments) are strikingly different, showing maximal rates which are substantially larger. We discuss some possible reasons for this below (in the section entitled ‘Parallel activation revisited’).

### Possible kinetic implications of the comparison between 31P MRS and AVD data

Even if the theory underpinning the traditional analyses is simplistic, consideration of Figure 11(e) suggests a prediction: if PCr recovery from maximal KE is exponential, its typical rate constant should be equal to the slopes of the notional straight lines connecting the data points to the origin in Figure 11(e); this should, further, be equal to the rate constant of $V_{O2}$ recovery. This notional rate constant for the studies in Figure 11(e) is plotted on the left-hand side of Figure 12(a), and is very much higher than (on the right-hand side) the actual PCr recovery rate constants in the MRS studies analysed in Figure 11(e). This appears never to have been measured in AVD studies after exhaustive KE. AVD $V_{O2}$ recovery kinetics appear only to have been measured once in high-intensity exercise (Krustrup et al. 2003), with the result shown (Fig. 12a: see key and legend). With appropriate caveats, whole-body $V_{O2}$ should have similar recovery kinetics to PCr: this has been directly demonstrated for moderate- and high-intensity exercise (Rossiter et al. 2002b) in a study whose 31P MRS data are analysed and presented in Figure 8, and as a pair of linked points in Figure 12(c). In published reports of whole-body $V_{O2}$ off-kinetics $k$ was 1.7–1.9 min$^{-1}$ after high-intensity cycle exercise (Paterson & Whipp 1991, Cunningham et al. 2000) and 1.5 min$^{-1}$ after high-intensity treadmill exercise, values much lower than Figure 12(a) predicts.

Figure 12(b) returns to the pH-dependence of recovery rate constants, which we have seen is readily explained if the primary relationship is between oxidative ATP synthesis rate and [ADP], as shown by the modelled lines in Figure 12(b): the 31P MRS data show the effect clearly, and the AVD/biopsy data are not inconsistent with it, although the scatter is large. This all merits further investigation.

Figure 12(c) offers at least a suggestion that the value of $Q_{\text{MAX}}$ that emerges from analysis of Q-$[\text{ADP}]$ in exercise may be independently related to mechanical power output. Most of the MRS studies with reported power data cluster in the lower left-hand (low-power/low-$Q_{\text{MAX}}$) corner, the two exceptions being the only maximal-KE AVD and 31P MRS study (Richardsen et al. 2002) and the unusually high-power two-leg exercise 31P MRS study (Jeneson & Bruggeman 2004) (arrowed here and in Figs 8 and 9); what looks like an anomalously high rate of ATP synthesis in Figures 8(a) and 9(a) seems less anomalous in Figure 12(c), compared to our calculation based on AVD-biopsy data from high-power exercise studies. Further studies to examine this point would be needed.
throw an interesting light on metabolic regulation in exercising skeletal muscle.

**Parallel activation revisited**

One possible explanation of the discrepancy noted in Figure 11 and related to power output in Figure 12(c) is the general category of parallel activation (Korzeniewski 1998), the postulated direct activation mechanism, standing outside closed-loop feedback control, shown schematically in Figure 1. As with the early discussion of possible direct pH effects, it is useful to consider more abstractly what might count as evidence of parallel activation. Again, assume we have reason to expect a (closed-loop feedback) relationship (Eqn 3) based on *in vivo* evidence of correlation, ex vivo evidence of direct effects, and perhaps also computational confirmation: this is, broadly, what we have for signals like [ADP] [perhaps taking account of specific effects of Pi (Schmitz et al. 2012, Wu et al. 2007), at least part of which may be captured by its incorporation into ΔG_ATP (Schmitz et al. 2012)]. Unless we are specifically interested in effects of pH (which are, if anything, negative), then we putative evidence of parallel activation (in some form) whenever Q ≠ f(X). For example, what view we take of what one might call the ‘dynamic range problem’, i.e. the inability of hyperbolic Q-[ADP] relationships to encompass resting [ADP], depends on whether we accept that that relationship can be intrinsically sigmoid: in this review we have followed (Jeneson et al. 1996) in this, reinforced by the recent computational evidence (Jeneson et al. 2009), particularly when Pi is taken into account. If this is not accepted, then the basal data point is just such a Q ≠ f(X) anomaly; for resting [ADP] of ~14 μM (Kemp et al. 2007) and assuming the measured true resting rate (admittedly slightly method-dependent) of ~0.5 mm min⁻¹ (Kemp & Brindle 2012) then for a Km value of ~50 μM [the value that gives near-linear relationship to PCr change (Kemp 1994)] the implied Q_MAX is ~2 mm min⁻¹, vastly too low to explain observed PCr recovery kinetics. Whether in this case our position would best be described as ignorance of some kind of parallel activation is debatable.

A more decisive case is when the same X occurs with very different Q: this may be the difference between KE and typical MR scanner exercise (Figs 11 and 12c), although as we have seen, directly comparable data are very scarce. At the very least this tells us that our understanding is incomplete, and that really Q is some more complicated function of other factors, say Q = g(X,Y,Z,...). Whether these unknown factors amount to parallel activation depends on their relation to the contraction signal (Fig. 1) – this is a high-level functional description with considerable explanatory power. It does not of course necessarily mean that we can identify a family of $Q = f(X)$ curves scaled by some factor depending on ATP demand, although this is a useful way of conceptualizing it [Model 4 in (Wust et al. 2011)].

Other evidence is suggestive, but more indirect and implying more complicated mechanisms. For example, the observation in single Xenopus fibres that $V_{O2}$ kinetics are biphasic at contraction onset, although monoeponential after cessation (i.e. during recovery, as defined here; Wust et al. 2013) certainly suggests things are more complicated than the simplest models assume. So too is the recent report that endurance training can accelerate $V_{O2}$ on-kinetics before any change in muscle mitochondrial biogenesis or capillary density (Zoladz et al. 2013). Similarly, the occurrence of ‘overshoot’ in PCr (Kushmerick et al. 1992, Christ et al. 2001) recovery and undershoot in ADP recovery ([Arnold et al. 1984, Argov et al. 1996] defies simple explanation on any feedback-based model, but can be explained, at least in principle, in terms of the post-exercise decay kinetics of parallel activation (Korzeniewski & Zoladz 2005).

If parallel activation is active in exercise, PCr kinetics could be dominated by its intrinsic off-kinetics, slow once it settled back to the resting-state value (Kemp 2011) but potentially very fast as it is switching off (Korzeniewski & Zoladz 2013). We would not expect the ‘track’ in Q-ADP space (for example) of the recovering muscle to be the same as that achieved at the end of exercise; it is approximately so in Figure 4, but detailed studies remain to be done.

Another casualty of parallel activation is the assumption that the end-of exercise rate of oxidative ATP synthesis and the immediately-following initial-recovery rate are the same; in the extreme case where parallel activation switched off instantaneously the end-exercise (subscript E) and initial recovery (subscript I) rates might be two different functions of the same end-exercise state, say $Q_E = f_I(X_E)$ and $Q_I = f_I(X_I) = f_I(X_E)$ (Korzeniewski & Zoladz 2013). There is no clear evidence that this can be so, but this is perhaps not saying much.

And yet, as we have seen, MRS-based measures of ‘mitochondrial capacity’ correlate well with other measures like whole-body $V_{O2max}$ and muscle mitochondrial content, as one would expect given the nature of the system; this is not what one would expect if responses to exercise were dominated by parallel activation phenomena that do not themselves correlate closely with ‘fixed’ factors like mitochondrial content.
Conclusions

The relationship between VO₂ (or oxidative ATP synthesis rate) and feedback ‘signals’ such as [ADP] is well known for typical ³¹P MRS experiments and deductible for some published maximum knee extension experiments; it is very different in these two situations, in that rates are much higher in KE, and (as has already been noted (Rasmussen et al. 2003, Rasmussen & Rasmussen 2000, Tonkonogi & Sahlin 1997)), higher than can be explained on the basis of mitochondrial properties in vitro. Maximum CE, despite using more muscle then either KE or ³¹P MRS experiments (and therefore being more sensitive to cardiopulmonary limitation), seems to resemble the ³¹P MRS case, although data on metabolite changes in CE are very rare. The relationship of oxidative ATP synthesis to PCr change in maximal KE implies very rapid recovery kinetics; an experiment in which AVD VO₂ data were collected with high time-resolution during recovery from maximal KE would be an interesting test of the analytical approach, standard in ³¹P MRS experiments, applied here to KE data.

There is no doubt that MMMF derived from ³¹P MRS post-exercise recovery data offer a robust, non-invasive way to detect impaired mitochondrial function and to monitor changes in mitochondrial function in vivo. In a large range of experiments and four muscles, ³¹P MRS data are fairly consistent, and there is ample evidence that MMMF derived from them correlate as expected with other measures of mitochondrial properties and function and other aspects of aerobic physiology. The ADP-model approach to interpreting these data seem to agree roughly on the implied maximum rates of oxidative ATP synthesis with CE experiments. An approach based on extrapolating linearly to complete PCr depletion gives much higher values, and is contradicted by what actually happens to PCr recovery when exercise is intense enough for appreciable pH changes. In contrast, the ‘ADP-control model’ approach (or similar) can explain these effects at least semi-quantitatively (but leaving open, currently, the possibility of direct effects of pH on mitochondrial ATP synthesis). Simulation (Fig. 5) suggests that the recovery kinetics of [ADP] are indeed (Kemp et al. 1997) relatively independent of pH, but supports the traditional advice to avoid large changes in pH when using PCr kinetics to assess mitochondrial function.

One kind of explanation for the quantitative differences identified between KE and ³¹P MRS experiments is parallel activation, i.e. activating ATP synthesis directly, independently of the feedback loop and its signal(s). Data are so far lacking to test this. We have suggested that VO₂ recovery kinetics at these very high powers (i.e. extending the AVD collection into recovery) would be interesting. So would studies of true maximal knee extension in an MR scanner (to see whether PCr recovery is as fast as KE AVD measurements imply): but there are formidable practical obstacles. Also interesting would be biopsy measurements (as ³¹P MRS would be very difficult) of PCr kinetics during maximal CE, and kinetics of AVD VO₂ recovery: are these (like ³¹P typical MRS data) consistent with a simple model without recourse to parallel activation? This would focus on exercise intensity (ATP turnover) itself as the relevant difference. Taking another approach, computational models which have been found to fit some MR data reasonably well (Wu et al. 2007, Jeneson et al. 2009, Schmitz et al. 2012) will clearly need adjustment for maximum KE, but how? Recent work suggests that calcium stimulation at a number of steps can upregulate oxidative ATP synthesis (Glancy & Balaban 2012), but the key question for computational modeling is how much, and in what relation to ATP turnover (and other possible signals possible not directly related to ATP turnover).

Conflict of interest

The authors declare that they have no conflicts of interest.

Financial support for the experiments described in Figs 2-4 was kindly provided by the Government of Malaysia as a PhD studentship to REA. GJK’s work in this area has been supported by the Biotechnology and Biological Sciences Research Council UK (BB/I001174/1) and by the Medical Research Council UK and Arthritis Research UK (MR/K006312/1) as part of the MRC – Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA). JJP is supported by a VIDI grant from the Netherlands Organisation for Scientific Research (VIDI 700.58.421) and by the Netherlands Consortium for Systems Biology (NCSB), which is part of the Netherlands Genomics Initiative / Netherlands Organisation for Scientific Research. GJK is grateful to HB Rossiter (University of Leeds and University of California, Los Angeles) and J Fulford (University of Exeter) for some valuable discussions.

References


Muscle mitochondrial function by $^{31}$P MRS - G J Kemp et al.

Acta Physiol 2015, 213, 107–144


gen uptake (VO₂) kinetics following attainment of a particular VO₂ during heavy-intensity exercise in humans. *Exp Physiol* 85, 339–347.


Haseler, L.J., Lin, A.P. & Richardson, R.S. 2004. Skeletal muscle oxidative metabolism in sedentary humans: 31P-


Muscle mitochondrial function by $^{31}$P MRS · G J Kemp et al.


three muscle groups in humans. NMR Biomed 26, 1403–1411.


rus magnetic resonance spectroscopy. MAGMA 5, 165–171.


Richardson, R.S., Leigh, J.S., Wagner, P.D. & Noyzenski, E.A. 1999. Cellular PO2 as a determinant of maximal
Muscle mitochondrial function by $^{31}$P MRS · G J Kemp et al.

Acta Physiol 2015, 213, 107–144


Muscle mitochondrial function by $^{31}$P MRS · G J Kemp et al.

Acta Physiol 2015, 213, 107–144


