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CORRECTION OF SPATIALLY DEPENDENT PHASE SHIFTS
FOR PARTIAL FOURIER IMAGING

JAMES R. MaAcFALL, NORBERT J. PELC, AND ROBERT M. VAVREK

General Electric Medical Systems
Milwaukee, Wisconsin 53201

Partial Fourier MR images (PFI) are constructed from data that have fewer phase encoding views than are con-
ventionally acquired using direct Fourier transform spin echo acquisition. The PFI data acquisition is structured
to obtain the same spatial resolution as conventional acquisition, trading off signal-to-noise reduction for acqui-
sition time improvement. The “missing” views can be zero filled or, if the data are Hermitian, supplied by sym-
metry (basic algorithm). The effect of spatially dependent phase shifts (SDPS) on PFI constructed with zero-fill
or the basic algorithm is illustrated. The causes and typical magnitudes of such SDPS are discussed. In spin echo
data only the low order, slowly varying SDPS, is shown to be significant. Through use of simulated and actual
data sets these typical SDPS are shown to produce significant artifacts in PFI, when the amount of missing data
is close to one-half. The artifacts are reduced when less data are missing. Good images can be generated with
the zero-fill algorithm if less than 25% of the data is missing. Several methods of correcting phase shifts in PFI
are developed: the basic Hermitian algorithm with frequency (x) direction correction (BAX), basic Fourier cor-
rection algorithm (BFC) and an improved iterative Fourier correction algorithm (IFC). The BFC and IFC can
produce good images when as much as 46% of the data is missing. Data with rapidly varying SDPS, for exam-
ple, gradient refocused data, make the phase correction task more difficult. With less than 25% of the data miss-

ing, however, acceptable gradient refocused PFI images can be created.

INTRODUCTION

The direct Fourier transform (DFT) MR imaging
method,"? under the assumption that the imaged
object is real, produces data with Hermitian symme-
tr+. > In this case, only one-half of the usual data
nreds to be acquired, allowing a scan time reduction
¢! a factor of one-half and the penalty of a signal-to-
noise reduction of a factor of 1/v2. Such images will
b referred to here as partial Fourier images (PFI).

In practice, an MR image is, of course, truly com-
1iex, even though magnitude images are usually dis-
played. Spatial domain effects such as flow, rf phase
shifts, T, decay during the sampling window and B,
inhomogeneity (in the case of gradient echoes) pro-
duce spatially dependent phase shifts (SDPS) that
cause the image to have imaginary components and
the data to be non-Hermitian.

In the time domain, incorrect cable lengths, misad-
justed quadrature signal detection, shifts of the sam-
pling grid such that an acquired spin echo is not
centered in the data acquisition window and gradient
eddy currents that cause the ccho to shift during
acquisition also cause the data to be non-Hermitian.
While such time domain effects are not strictly SDPS,
each can be viewed as being caused by an “equivalent”
SDPS. For example, if the spin echo is shifted in the
sampling window, it can be viewed as being caused by
a linearly varying spatial phase shift via the Fourier
frequency shift theorem.’

PFI have been previously reported by Feinberg.®
Also, a number of abstracts have appeared in the con-
ference literature in recent years.”” However, the
correction of SDPS in order to create Hermitian data
sets for PFI has not been widely treated in the open
literature.
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In this article the type and magnitude of various
SDPS in typical high field (1.57) MR “spin warp”?
images are evaluated. The artifacts associated with each
type of SDPS are demonstrated using simulated MR
data. The ability of various phase shift correction
schemes to reduce these artifacts in simulated and actual
data is presented. The approach adopted is to correct
the SDPS so that a complete data set can be created
usi.ig Hermitian symmetry which then allows existing
two-dimensional Fourier transform MR image recon-
struction programs to be used, as opposed to use of
MEM'"' or ARMA'" techniques, which require funda-
mentally different methods of image reconstruction.

BASIC PFI ALGORITHM

In DFT imaging an N x N point complex data set,
S(ky, k) is collected for:

k.= nAk + k,, n=1...,N

(1

k. =mAk + k m=1,...,N

O
where Ak = 2x/D and D is the length of one side
of the square field-of-view (FOV). Nominally, ko =
ko = —(N/2 + 1)Ak. The pulse sequence is repeated
for m =1,...,N and at each repetition the N values
of k, are collected. It is possible to have M x N data
sets where M # N. Here the case M = N will be treated
for simplicity although the extension to the M = N
case 1is straightforward. Each such collection at a
given k, can be repeated N,, times and the results
averaged to give improved signal-to-noise with conse-
quent lenghtening of the acquisition time. The N data
points for a given k, are referred to as a “view” of
data. PFI is useful when N,, = 1 and it is desired to
further reduce the imaging time. If the image is real,
that is, if the data S(k,,k,) are Hermitian then:

S(=k,,~k,) = S*(k, k) (2)
where “*” indicates complex conjugation. Hence, it is
only necessary to gather data for m = N/2 + 1. The
data for m = N/2 + 2 through m = N can be obtained
from the symmetry relation Eq. (2). The full data set
forms an N x N complex matrix. An image is con-
structed by computing the two dimensional Fourier
transform of the measured data matrix. This is typi-
cally accomplished by computing N one dimensional
Fourier transforms (FT) along the rows (k, direc-
tion) and then N one dimensional column FT’s (k,
direction).

In the PFI case the data for the rows exist up to
m = N/2 + 1. Hence the k. direction transforms can

be completed giving S’(x,k,). The Hermitian sym-
metry relation is now confined to the &, direction:

S'(x,—k,) = [S"(x,k,)]". (3)

Since the exact center of the data is often difficult o
find, this formulation reduces a two dimensiona|
problem as in Eq. (2) to a one dimensional one.

Hence, the basic PFI algorithm as used here con-
sists of (1) acquiring data for m = | to N/2 + 1, (2)
computing the 4, direction transforms, (3) applying
Eq. (3) to obtain S"(x,k,) for m = N/2 + 2 to N and
(4) computing the final &, direction transforms to get
the image.

[t is useful to consider a simple example. Let f(x)
be a simple complex function whose imaginary part is
zero:

A —L<x<lL
Re{/(x)} = 0 ew]
elsewhere )
Im{f(x)} =0 .
The FT, F(k,), of this function is:
Re{F(k,)} = 2ALsin(Lk,)/(Lk,)
(3)

Im{F(k.)} =0 .

Since f(x) is real, the FT of f(x) is Hermitian, i.c.,
F(=k,) = F*(k,) . (6)

The practical translation of this is that the real part of
Fis symmetric about &, = 0 (even) and the imaginary
part is anti-symmetric (odd).” In particular, F(k.=
0) should be equal to zero.

Phase shifts of f(x) will destroy the Hermitian
symmetry. Consider [’ (x):

‘f/ (.\') — e/’p(,\ )f('\,)
and
p(x) =)+ 5% + $5x° (7)

Thus, f7(x) is a (possibly spatially dependent) phase
shifted version of f(x). Let F'(k,) be the FT of
J7(x). If s, and s, are zero then F'(k,) is just multi-
plied by a constant phase factor. However, while 7’
is still symmetric about k, = 0, it is no longer real.
Also, Im{F’(k, = 0)} is not equal to zero. Hence, a
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simple constant phase shift can make a function no
longer Hermitian. If s, = s, = 0 but s, # 0 then by
the frequency shift theorem F’(k,) = F(k, — s;).
Now F” is no longer symmetric about k, = 0 and is
thus no longer Hermitian. Finally, if s, # 0 then F”’ is
the convolution of F with a function that is symmet-
ric in both the real and imaginary parts. This function
thus has a symme ric imaginary part, which makes F’
not Hermitian.

Hence, it is easy to see that simple, low order phase
shifts of an input function whose FT is Hermitian will
produce an output function whose FT is no longer
Hermitian, since the modified input function is no
longer real.

SPATIALLY DEPENDENT PHASE SHIFTS

Figure 1(a)-(d) shows the magnitude, phase, real
and imaginary images for a typical 256 x 256 DFT
“spin warp” MR head scan at 1.57 for a 24 cm FOV.
The modulation in the real, imaginary and phase images
that shows up as bands are mainly due to a linear
SDPS generated by the spin echo not reaching its
peak at the center of the data acquisition window. For
every sampling interval in k,, k, that the echo is dis-
placed from the center of the window a 27 cycle of
modulation appears in these images. The distinct dis-
continuities in the phase image are due to the +r
range of the two-argument arctangent function. The
intensity scaling of + is thus apparent from the

Fig. 1. Typical 256 x 256 DFT MR image: (A) magnitude,
(B) phase, (C) real, (D) imaginary.

image. The pixels outside the object have nearly ran-
dom values of phase since the arctangent of the ratio
of two random variables with zero mean is being
computed.

The magnitude and phase along the line AA’
shown in Fig. 1(c) are graphed in Fig. 2. Spatial
dimensions such as the y-axis distance as shown here
will be given in pixels for convenience. Inside the
brain the major trend in the phase is a low order
smooth variation. The prominent exceptions are at
locations of flow and air-tissue interfaces. A fit of a
Sth order polynomial to the phase data:

PO =cy+ay+ay’+ay +apt (8)

gives @y = —3.94, a, = 3.45 x 1072, a, = —8.07 X
107%, a3, =9.32 x 107 and @, = 1.5 x 107", where p
is given in radians, y in pixels. For the purposes of
this fit, data outside the skull and the data causing the
sharp phase shift for the flowing blood at the base of
the skull were excluded. At y = 100 (pixels) the first
three terms account for 99.9% of the change from
point to point, while the last two only supply 0.1%.

This indicates that the major phase variation terms
are the constant, linear and quadratic ones. In the
imaging system used, since no particular effort was
made to perfectly adjust these phase shifts, the con-
stant phase shift could be anywhere in the range + .
The x direction linear phase shift due to the echo peak
not being aligned with the point at n = N/2 + 1
amounts to a 27 phase modulation for every full data
sample shift of the center of the echo. Typically the
echo is centered to within +3 data samples. In the y
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Fig. 2. Graph of magnitude (top) and phase (bottom) along
line AA’ shown in Fig. 1(C).
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direction the “pseudo-echo” peak not being at m =
N/2 + 1 will also induce a linear phase shift. The y
direction is usually much better controlled in this
regard. Typically there is no more than a +0.5 sam-
ple shift of the y direction “pseudo-echo” peak. This
is well illustrated by Fig. 1 in which there are about
three cycles of modulation in the x direction, but only
one-half a cycle of modulation in the y direction. As
a function of x the quadratic term will vary, being
larger in the center and smaller at the edges of the
object. A value of 5, = 0.0001 was observed to be a
reasonable one to use as typical in Eq. (7).

A constant, overall non-zero phase shift can be due
to electronic delays that cause the frequency source
(local oscillator) and the signal to not be in phase. A
linear spatial phase shift can be caused by the data not
being centered in the data acquisition window. Quad-
ratic spatial phase shifts are likely due to rf phase
shifts because of the conductive nature of the imaged
object.

Experience has shown that most spin echo images
generated on the MR imager used to obtain Fig. 1
have phase images that are dominated by terms no
higher than quadratic. The exceptions, as in Fig. 1,
are in regions of flow and motion, which usually are
not the dominant effect except, perhaps, some scans
of the heart and abdomen. For the purposes of this
article, the assumption will be made that the principal
phase shifts are of low order, which is typically the
case in the head, pelvis and extremities.

It is easy to see the effect of such SDPS on a PFI
image by using a subset of the data for Fig. 1. If the
first N/2 + 1 views (N = 256) of the data for Fig. 1
are treated using the basic PFI algorithm, making the
assumption that the data are Hermitian about view
129, the image of Fig. 3(a) results. The artifacts that
result from the non-Hermiticity of the data due to the
SDPS’s are evident.

The principal artifacts are obviously due to the x
direction linear SDPS that produce the broad bands
in Fig. 1. Since the data are complete in the x direc-
tion, it is possible to perform a constant and linear x
direction phase correction on the data. The correction
factors are obtained from the data in the manner out-
lined in reference 12. Every view, after the x direction
FT, is then corrected for linear, constant SDPS using
the same correction factors for all views. This avoids
inducing any k, direction phase shifts. This is termed
the basic algorithm with x phase correction (BAX
algorithm). Figure 3(b) shows the PFI image pro-
duced with the BAX algorithm. The image still
exhibits some “smearing,” but the major banding has
been corrected.

Since phase shifts still exist, it may actually be pos-

sible to cause worse artifacts by use of Eq. (3). Fig-
ure 3(c) is a reconstruction for which no x direction
phase correction is performed and Eq. (3) is not used.
The data were simply zero filled from m = 130 to
m = 256 before the y direction FT was performed
(zero-fill algorithm). While there are no obvious
intensity artifacts, the image is smeared along the ¥
direction, with obvious loss of resolution and con-
trast. The fact that the zero-fill algorithm is an
improvement on the BAX algorithm does show, how-
ever, that in the presence of phase shifts the use of
non-existent symmetry properties can actually create
artifacts.

It is possible to create a truly Hermitian data set
for the image of Fig. 1(a) by computing the inverse
FT of a complex image which has its real part equal
to the magnitude image of Fig. 1(a) and which has its
imaginary part set to zero. These data are Hermitian
about the point m = 129 when a 256 point FFT is
used. When a PFI image is constructed from the first
129 views of such a data set using the basic algorithm
the image is identical to the original magnitude image.
Hence the artifacts of Fig. 3(a)-(c) are indeed due to
the phase shifts.

A question that naturally occurs is whether correc-
tion of constant and linear SDPS in both the x and y
directions is sufficient for adequate PFI images. By

Fig. 3. PFI showing artifacts from various algorithms: (A)
basic algorithm, (B) BAX algorithm, (C) zero-fill algorithm,
(D) basic algorithm using data that had prior constant, lin-
ear SDPS correction, illustrating artifacts from higher order
SDPS.
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correcting the linear and constant terms in Fig. 1 and
then creating a data set by inverse FT, as described
above, a data set with only the higher order terms can
be created. A PFI image using this data set and the
pasic algorithm is shown in Fig. 3(d). While it doesn’t
<how any of the banding of Fig. 3(a), and is improved
compared to Fig. 3(¢), it is still “smeared” or “blurry”
indicating that higher order correction is important.

CORRECTION OF SDPS

The central problem of PFI formation, then, is
ostimation and correction of SDPS for a data set that
contains less than the N views required for reconstruc-
vion of a full, complex image. An obvious approach
s to acquire some exira “overscan” views beyond the
.1 = N/2 + 1 view in order to estimate the SDPS. If
views from m =1 to m = N/2 + | + m,, views are
collected then a complex image of the object can be
constructed using views m = N/2 + 2 — m,, to m =
N/2 4+ 1 4+ m,, over the full FOV that has full reso-
lution in the x direction and low resolution in the y.
T his “image” would be constructed from a complete
Jata set for the resolution obtained and hence would
be free from the PFI artifacts shown in Fig. 3 that
could bias estimates of the SDPS.

In practice it is not necessary to actually compute
the low resolution image. Since the &, direction data
are complete, the &, direction FT’s can be computed
jcaving a data set in which each column (4, direc-
tion) can be treated independently as in the basic algo-
rithm. Additionally, an x direction constant and linear
phase correction is performed as described previously.
A major advantage of this column-by-column phase
determination and correction is that it allows correc-
tion of SDPS that depend both on powers of x, y sep-
arately and crossterms like xy (and higher terms) since
a different phase correction is allowed for each col-
umn. Of course, the maximum power of y involved is
determined by the resolution of the estimator “image”
i the y direction.

In each column, then, a low resolution estimate of
the SDPS is made from the center 2m,, data points.
‘The estimate is used to correct the full data from m =1
wm=N/2+ 1+ m,,. After this correction the data
<hould be nearly Hermitian. Hence, Eq. (3) can be
used to correctly complete the data from m = N/2 +
Y+ m,, to m = N. The image is then formed by com-
puting the final, k, direction FT.

The estimate of the SDPS is made by windowing
ihe center 2m,, points with an appropriate function
-uch as a Hanning window centered at m = 129, “zero
‘illing” on both sides of the data to have N points and
‘hen computing an N point FFT of this data. The

phase at each point of this FFT data is the phase esti-
mate of the corresponding point in the eventual
image. The window function is important for suppres-
sion of data truncation artifacts in the FT. Without
the window the phase estimate will contain artifacts
that will eventually induce artifacts in the final PFI.

A simple approach to actually making the correc-
tion is to combine the data fromm =1tom =N/2 +
1 + m,, with zero filling to /m = N and compute the
N point FFT of the result. Each point in this data is
then multiplied by the inverse of the phase estimate
for that point. The result is then again transformed
back to k-space to be the phase corrected data. Essen-
tially, this performs a “Fourier” interpolation of the
data to the phase corrected set of points. K-space
(time domain) schemes may be able to perform this
correction adequately, but the Fourier one is concep-
tually simple and easily implemented in an image
reconstruction program since a rapid FT is already
available.

When the relation Eq. (3) is used on the corrected
data, it is useful to discard m, points near m1 = N/2 +
1 + m,, since there will be some “Fourier leakage”
there if the correction is large. Hence, the points from
m = N/2 + 2+ m, — mytom = N are replaced
using Eq. (3). The foregoing PFI algorithm will be
called the basic Fourier correction algorithm (BFC
algorithm). ‘

As an example, suppose the image domain data for
a given image line is the rectangular function of Eq. (5)
and that it has an SDPS as in Eq. (7). The k-space
data for this line would then be the FT of this func-
tion. Figure 4(a) shows the magnitude for the center
points of the FT of Eq. (5) for L = 48 (pixels), A =100
and N = 256. The k, distance is scaled in pixels for
convenience. The center point thus occurs at m = 129
(the center point for these plots) for a 256 point FFT
that has a standard linear phase shift of 1/2 of the
FOV applied to keep the “echo” centered. Figure 4(b)
shows the magnitude for the FT of Eq. (7) with s, = .1,
s, = —.01 and s, = .0001, which are typical values for
these coefficients. The data are truncated at m = 137
to simulate a PFI data set with m, = 8. Note how
the center has been shifted and the Hermitian symme-
try distorted, when compared to Fig. 4(a). Figure 4(c)
shows the result after the data of Fig. 4(b) have been
processed using the BFC algorithm with m, = 2. At
this scale Figs. 4(a),(c) are very similar as would be
expected if the correction scheme is to be successful.
Figure 4(d) shows the magnitude of the difference
between the function of Fig. 4(a) and that of Fig. 4(c).
The differences, on the order of 2%, are due to inac-
curacies in the estimation and to “leakage” at the trun-
cation point from the correction step.
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Fig. 4. Graphs showing magnitude of result at various
stages of BFC algorithm on ‘sinc’ function data: (A) sinc
with no phase shift, (B) sinc with phase shift, data truncated
beyond m = 137, simulating PFI data, (C) sinc of (B) after
BFC phase estimation and correction, (D) difference of (A)
and (C).

One way to answer the question as to whether the
BFC algorithm is “good enough” is to see how well
full reconstructions agree with PFI images made from
subsets of the same data. Figure 5(a) shows a BFC
PFI reconstruction performed on the data for the
image in Fig. 1 with m,, = 8 and m,, = 2. Clearly, a
good image has resulted. Figure 5(b) shows the differ-
ence between Fig. 5(a) and 1(a). The difference image
has been scaled to be able to display it with the others.
The data in the exterior show noise about zero. The
scaling is such that with this window the maximum
differences shown (at the edge of the skull) are about
10%. The difference image shows three types of
artifacts. The first is some additional streaking from
regions of flow. The second is a faint low frequency
“ringing” that is consistent with the spatial frequency
of m,, = 8. Low level artifacts in the exterior have
also been generated. The maximum amplitude of
these artifacts is less than 5% when compared to the
general image amplitude and hence they are not of
much consequence. The third artifact is the high fre-
quency “edge map” effect that is most prominent at
the top and bottom of the skull. The mismatch at the
skull is more prominent in this difference image, but
is still a small percent error since the signal there is
very large.

Figure 5(c) shows the PFI resulting from a data set

with m,, = 8 using the BAX algorithm. While the
exterior modulation is reduced compared to Fig. 3(b),
which had m,, =1, it is not as good as Fig. 5(a).

Figure 6(a) shows the PFI resulting from using
m,, = 8 with the zero-fill algorithm. When compared
to m,, = 1, Fig. 3(c), there is some improvement in
the exterior, but the interior appears to be the same or
somewhat worse. It is not as good as Fig. 5(a) where
the more sophisticated BFC algorithm has been used.
Figure 6(b) shows the result when m,, = 64 is used
with the zero-fill algorithm. Figure 6(c) shows the dif-
ference image between the complete reconstruction
and Fig. 6(b). Scaling similar to that of Fig. 5(b) has
been applied for the purpose of display (except that
the total offset is slightly different, giving a different
overall brightness). For a 50% increase in scan time
over the m,, = 0 case, this simple technique (3,4
acquisition compared to a full N = 256) gives an
image nearly as good as the full acquisition technique
(but with signal-to-noise intermediate between 1,2
and full acquisition). Evidently, the truncation at
higher spatial frequency components (large m1,,) does
not produce as serious artifacts as truncation of the
lower frequencies (small m,, ).

SIMULATED SINGLE COMPONENT SDPS

An object which is a square of constant intensity
with a different SDPS on each y direction line pro-
vides a useful way to visualize how well the various
algorithms outlined in the previous sections perforn.
Figure 7(a) shows the magnitude image of the square
(the small square in the upper right-hand corner was
included for purposes of orientation). Figure 7(b)
shows the phase image for a square in which each col-
umn (p direction) has a different constant phase shift
ranging from —x (left) to « (right). The result is a
ramp in phase in the x direction. Figure 7(c) shows the
phase image where each column has a different linear
phase shift with slope ranging from =/N per pixel to
—n/N per pixel. Figure 7(d) shows a phase image
where cach column has a different quadratic phase
shift with the quadratic coefficient ranging from
—.0001 to .0001. These values cover the typical ranges
noted previously.

Four data sets that produce the images shown in
Fig. 7 were calculated from the inverse 2DFT of the
complex image whose real and imaginary parts were
computed from the magnitude image of Fig. 7(a) and
the corresponding phase image. Each data set thus
has a range of SDPS of a particular type (none, con-
stant, linear or quadratic). These data sets can then be
used to observe the artifacts each particular phase
type creates in a final PFI image.
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Fig. 5. (A) PFI resulting from the BFC algorithm,
my, =8, my=2. (B) difference between magnitude of Fig.
1(A) and 5(A). Difference image is scaled so that maximum
brightness is 10% difference. (C) PFI resulting from BAX
algorithm with m,, = 8.

Figure 8 shows the difference between the magni-
tude image from a full data calculation for each of
the data sets and that from a PFI calculation using
the basic algorithm with m,, = 8. Presumably, a per-
fect correction will allow a perfect subtraction, thus
Fig. 8 shows images of the artifacts generated. The
magnitude of the square, as scaled, is 775 hence the
window for Fig. 8 is set to about +2%.

Figure 8(a) shows the result for the data set with no
phase shifts. In this case the data are Hermitian and
the PFI image is as good as the original image, as il-
lustrated by the subtraction image being essentially zero
(interior matches the exterior). Figure 8(b) shows the
result for the data set with constant y direction phase
shifts. The difference image is non-zero everywhere
except near the center and edges where the phase is
near zero or +. Figures 8(c) and (d) show the results
for the linear and quadratic terms. They exhibit a cen-
tral region of good reconstruction near where the
phase shift is zero. The artifacts get worse as the
phase shifts increase away from the center. Also note
that the artifacts propogate in the y direction only
with large values both inside and outside of the ob-
ject. It is, of course, no surprise that the basic algo-
rithm is very sensitive to phase shifts. Figure 8 will
serve as a baseline to compare the performance of
other algorithms.

Fig. 6. (A) PFI resulting from the zero-fill algorithm with
me, = 8. (B) same as Fig. 6(A) with m,, = 64. (C) differ-
ence between magnitude of Fig. 6A and 6B, same scaling as
in Fig. 5B.

Fig. 7. (A) magnitude image of a square. (B) phase image
of square with different constant phase shift for each ver-
tical image line, phase shifts range linearly from —27 on the
left to 27 on the right. (C) phase image of square with dif-
ferent linear phase shift for each vertical image line, phase
shift factor varies linearly from 7/N on the left to —7/N
on the right. (D) phase image of square with different quad-
ratic phase shift for each vertical image line, phase shift fac-
tor varies linearly from —.0001 on the left to .0001 on the
right.
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Fig. 8. Images of differepce between PFI image made using
the basic algorithm and full data image of the square for the
various phase shifts: (A) no phase shifts, (B) constant phase
shifts, (C) linear phase shifts, (D) quadratic phase shifts.

A similar set of difference images are shown in Fig. 9
for a PFI that uses the BFC algorithm with m,, = 8
and m, = 2. Figure 9(a), for the case of no phase
shifts, now shows some small errors. The spatial fre-

- quency of the oscillation is consistent with the value
of m,,. Hence the BFC technique can induce some
small errors into an otherwise Hermitian data set. Fig-
ure 9(b) shows the result for constant phase shifts in
the y direction. Since these constant phase shifts vary
linearly from left to right, they form a phase ramp,
which is a linear phase shift in the x direction. The x
direction phase shift correction corrects this, giving a
result that is similar to Fig. 9(a). Figures 9(c) and (d)
show the result for linear and quadratic y-direction
phase shifts that vary in the x direction. The artifacts
are larger for the larger phase shifts. In the center,
where the phase shift is zero, the artifacts are similar
to Fig. 9(a). The exterior artifacts have similarly been
reduced, but there are a few places with somewhat
stronger residual values, that appear at a horizontal
line on the top and bottom, midway to the edge of the
FOV.

It is clear that the BFC phase correction technique
has made a significant reduction of the artifacts that
appear in Fig. 8. In Fig. 8 the worst artifacts are due
to the constant phase shifts, followed in severity by
the linear and then the quadratic. The maximum dif-
ferences in Fig. 8, in the black regions, approach

Fig. 9. Images of difference between PFI image made using
the BFC algorithm and full data image of the square for the
various phase shifts: (A) no phase shifts, (B) constant phase
shifts, (C) linear phase shifts, (D) quadratic phase shifts.

100%. The phase correction technique has reduced
these artifacts so that the worst remaining ones are
due to the linear shifts. The maximum differences are
no worse than 10% at the extremes and there are large
ranges where the differences are less than 2%.

When a PF1 is constructed using the zero fill algo-
rithm, the dominant effect appears to be due to the
truncation of the data. Figure 10(b) shows the differ-
ence image for the no phase shift square for the zero-
fill technique with m,, = 8. The spatial frequency of
the oscillation is consistent with the choice of m,,.
The images for the other types of phase shift are sim-
ilar to Fig. 10(b). Figure 10(a) shows the same image
for the BFC algorithm. The artifacts are much smaller
for this technique. As m,, is increased the artifacts
become smaller and both techniques begin to give
similar results, although the BFC technique is consis-
tently better. Figures 10(c) and (d) show the difference
images for the two techniques for m,, = 64. The
overshoot at the square edge is worse for the zero fill
technique (Fig. 10(d)). Note that the oscillation spatial
frequency has increased consistently with m,,. The
artifacts have decreased mainly due to the fact that
there is decreased signal “energy” at the higher spatial
frequencies, hence artifacts due to truncation or phase
miscorrection at these frequencies will be of lower
intensity compared to those generated at lower
frequencies.
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Fig. 10. Images of difference between PFI image made with
various algorithms and full data image of the square with
the constant phase shift: (A) BFC algorithm, m,, =38,
my =2, (B) zero-fill algorithm, m,, =8, (C) BFC algo-
rithm, m,, = 64, m, = 2, (D) zero-fill algorithm, m,, = 64.

Thus the BFC technique performs better than the
basic or the zero-fill algorithms for small values of
m,, in the presence of typical SDPS. It does have the
defect of inducing small artifacts due to use of trun-
cated data in the phase estimation and correction
steps.

IMPROVEMENTS TO THE BFC ALGORITHM

There are two sources of error in the BFC algo-
rithm. The first is due to the use of a window func-
tion in the phase estimation step and the second is the
use of truncated data in the correction step that leads
to Fourier “leakage” about the truncation point.

The most serious window effect is due to its center-
ing. Since the data have an unknown phase shift, it is
not a priori possible to have the window function cen-
tered on the actual peak of the data. Figure 11a shows
magnitude of the “raw data,” F(k,), for the center
of k-space for a rectangular function as given in Eq. (5)
for A = 100, L = 96 and N = 256. The data peak is
at point 129 (which is the first point to the right of
center on these graphs) since the SDPS is zero. Only
the central part of the data, from m = 113 to m = 144
is displayed. A simple Hanning window function with
a width of 16 data points is also shown in Fig. 11(a).
If the data are multiplied by this window, zero-filled
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Fig. 11. Graphs showing the effect of window misregistra-
tion on phase estimate. (A) window centered on data, (B)
window offset by .5 data sample, (C) phase estimate result-
ing from (A), phase estimate resulting from (B).

to N = 256 and Fourier transformed, the phase at
each point in the transform is zero everywhere inside
the rectangle as shown in Fig. 11(c), where the spatial
phase is graphed as a function of y fromy=1toy =
256 (pixels). The phase at points outside the rectangle
was set to a value of /2 for the purposes of the fig-
ure so that the edge of the rectangle function would
be apparent, although the actual value for the phase
there is near zero. Hence if the window is centered,
the phase estimation gives values close to the correct
one (zero) inside the rectangle. Figure 11(b) shows
data and a window similar to that of Fig. 11(a) except
that the window is shifted by one-half of a data sam-
ple. The phase calculated for this window is shown in
Fig. 11(d), which is scaled similarly to Fig. 11(c). The
miscentered window has systematically lowered the
phase estimation on one side of center and raised
them on the other side. This creates a nonlinear dis-
tortion of the phase estimate that can lead to errors in
the phase correction.

The window function can be centered on the data
if an estimate of the data center is obtained. The
information on the amount that the data are shifted is
contained in the linear phase shift term. This may be
estimated in a variety of ways such as a weighted
average of points or polynomial fitting. Another way
is to use the method of reference 12 on the FT of the
center 2m,, points without windowing. Essentially,
this uses a rectangular window (which has minimum
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bias for the linear phase shift) on the central points in
order to estimate the center of the data.

The data truncation problem can be addressed with
an iterative implementation of the BFC algorithm. As
it is presented above, the BFC algorithm produces an
estimate of a phase corrected, Hermitian data set so
that Eq. (3) can be used to complete the data. If these
“complete” data then have the SDPS restored, the
points in the “data tail” region, from m = N/2 + m,,
to m = N become an estimate of the data that would
have been acquired for these points. An improved
estimate of the complete data set can then be assem-
bled by combining the original data with the estimate
of the tail out to m = N. The process of phase estima-
tion, correction, use of Eq. (3) and phase restoration
can then be repeated on the improved data set to pro-
duce a better estimate of the tail. The estimate is
improved since on this second iteration the correction
step involves the FT of data that includes the im-
proved tail estimate instead of zero-filling as on the
first iteration. If a low order spatial frequency esti-
mate of the phase (from the center 2*m,, points) is
sufficient, it only has to be done on the first iteration
and then can be used as is for the subsequent ones. In
practice it was observed that three iterations produced
a strong suppression of the truncation artifact.

The phase restoration step is accomplished in prac-
tice by computing the FT of the data after the use of
Eq. (3). Since the data are now approximately Her-
mitian, its phase will be near zero. Hence the phase
. may be restored by multiplying the FT by a phase fac-
tor given by the original phase estimate. The phase
restored data are given by the inverse FT. This im-
proved Fourier correction algorithm will be referred
to as the IFC algorithm. R

Figure 12 shows difference images for the squares
with different SDPS created using the IFC algorithm
with m,, = 8. The oscillatory artifact that is apparent
in the no phase shift and constant phase shift cases
for the BFC algorithm (Figs. 9(a) and (b)) is now sup-
pressed in the corresponding IFC cases (Figs. 12(a)
and (b)). To understand this it is helpful to review the
BFC artifact in more detail. In the zero phase shift
case, the window is correctly centered and the phase
estimation is not affected by incorrect centering. The
Fourier transform of a Hanning window, however,
does have negative lobes that can cause the estimate
of the phase (nominally zero) to give values of 7 near
the edges of the image space. When the truncated
data are transformed for phase correction, significant
energy corresponding to the truncation exists at the
edges of image space where its phase can be (incor-
rectly) changed by =. This incorrect phase results in
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Fig. 12. Images of difference between PFI image made
using the IFC algorithm and full data image of the square
for the various phase shifts: (A) no phase shifts, (B) con-
stant phase shifts, (C) linear phase shifts, (D) quadratic
phase shifts.

the small artifact (at the truncation frequency) in Figs.
9(a) and (b). The IFC algorithm’s iterative nature, by
supplying a “tail” estimate, reduces the amount of FT
energy caused by truncation effects that can have its
phase wrongly assigned, hence the artifacts at the
truncation frequency are reduced. Different window
functions (e.g., those with a positive Fourier trans-
form) may reduce the phase misassignment (for SDPS
near zero), but with only a few points in the estimate,
the data are always effectively truncated, leading to
similar effects.

In the linear phase shift case (Fig. 12(c)) the
artifacts have also been significantly improved. The
reason for the residual effects at large positive linear
phase shifts (on the left-hand side of Fig. 12(c)) is that
the data have been shifted sufficiently to cause the
central 2m,, points to asymmetrically sample the
peak region, effectively giving a bias in the phase shift
estimation. The quadratic phase shift image, however,
shows only slight improvement.

A PFI image using the IFC algorithm on the data
of Fig. 1 shows little improvement, since the BFC case
is quite good (Fig. 5(a)). Presumably, the SDPS for
the data of Fig. 1 are small. Figures 13(a) and (b)
show difference images for the PFI created using the
BFC and the IFC at a 2% window. Clearly, the I[FC
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algorithm (Fig. 13(b)) has reduced the artifacts.
Figures 13(c) and (d) are PFI for the two algorithms
for a uniform water phantom (30 cm dia) in a 48-cm
FOV with larger SDPS at a 1% window. The im-
provement of the IFC (Fig. 13(d)) is evident.

The remaining artifacts are due to secondary
effects of the window during the phase estimation
step. Just as the information about the size of the lin-
ear phase shifts is contained in the position of the
peak of the data, the information about the size of
the quadratic phase shifts is contained in the width of
the central peak area. The window function modifies
the width of the central peak, hence biasing the es-
timate of higher order phase shifts. Using a biased
estimate is not as serious, however, as leaving uncor-
rected the original higher order phase shifts as can be
seen from comparing Figs. 12(d) and 9(d) with Fig. 8(d).

While the IFC algorithm is an improvement on
the BFC one, its implementation does entail signifi-
cant extra computation. In clinical images the im-
provements are barely noticeable when mixed with
the structure of the object, even though the object
exterior artifacts are reduced. Hence the extra com-
putational burden of the IFC algorithm may not be
warranted.

Fig. 13. Images of difference between PFI image made
using the BFC or the IFC algorithm and the full data image
for a head or a water phantom: (A) head data of Fig. 1(A),
BFC algorithm, m,, =8, my =2, (B) head data of Fig.
1(A), IFC algorithm, m,, =8, (C) water phantom, BFC
algorithm, m,, = 8, m, =2, (D) water phantom, IFC algo-
rithm, m,, = 8.

RAPID SDPS VARIATION

When the SDPS vary rapidly in either space or
time, one might expect PFI phase correction to fail.
Figure 14(a) shows the magnitude of a DFT spin echo
image obtained in the pelvis. These data were ac-
quired without cardiac gating or flow moment com-
pensation. Hence there are well known artifacts in the
magnitude image due to inconsistent phases of the
flowing blood in the femoral arteries. A PFI image
made using the data of Fig. 14(a) and the BFC algo-
rithm with m,, = 8 and m, = 2 is shown in Fig. 14(b).
The two images have a similar appearance with the
PFI image also having flow related artifacts. The dif-
ference image is shown in Fig. 14(c). The image is
scaled to allow display with the others. The low fre-
quency variations in the muscle tissue are on the order
of 10% of the muscle intensity. This shows that for
stationary tissue the two images are nearly the same
but that the flow artifacts are different. Notice, how-
ever, that while the artifacts are different in detail,
they are actually qualitatively the same. Hence the
PFI works reasonably well in this situation.

The reason for the differences, of course, is that
the phase estimation is done with low resolution that
cannot adequately sample the phase shifts of the small

Fig. 14. (A) Full data 256 x 256 DFT spin echo image of
a pelvis acquired with no flow or motion compensation. (B)
PFI image using the data of Fig. 14(A) and the BFC algo-
rithm with m,, =8, m, = 2. (C) difference image between
Fig. 14(A), (B), scaled as in Fig.\5(B).
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vessels. In addition there are temporal variations in the
phase of the blood. The phase estimation techniques
presented here implicitly assume that the phase shifts
are constant during the data acquisition. Since the
flow artifacts originate from small regions of space,
they do not significantly affect the estimate of the low
order phase shifts, thus the correction techniques per-
form adequately for spin echo images where the low
order SDPS are the dominant effect. The fact that the
flow artifacts are different in detail is reasonable since
the data for the image were acquired over a shorter
time span for the PFI, giving a different set of flow
phase shifts from the full data.

Eddy currents on the readout or phase encoding
axis are time dependent effects that could induce
equivalent SDPS of higher order. While such effects
cannot be ruled out in the data used for the images in
this report, the imager used to obtain the data em-
ployed hardware measures to minimize eddy current
formation through gradient pulse shaping.

Gradient refocused data also contain phase shifts
that are not of the low order treated here. The phases
of various organs and regions may differ widely de-
pending on the local magnetic susceptibility and/or
the B, homogeneity. Figures 15(a) and (b) show the
magnitude and phase of a gradient refocused image

Fig. 15. (A) Full data 256 x 256 DFT gradient refocused
echo image of a pelvis acquired with no flow or motion
compensation. (B) phase image for Fig. 15(A). (C) PFI
image from the data of Fig. 15(A) using the BFC algorithm
and m,, = 8, m, = 2. (D) same as Fig. 15(C) with m,, = 64,
m,;= 2.

acquired in the pelvis. There are rapid variations of
the phase due to organ dependent susceptibility
changes as well as inconsistent phase due to flow and
motion. Figure 15(c) is the PFI made using a subset of
the data of Fig. 15(a) with the BFC algorithm and
mq, = 8 and m, = 2. The SDPS vary too rapidly for
this algorithm to give a good image. The IFC pro-
duces little improvement. As m,, increases, however,
the image quality improves. Figure 15(d) shows a PF]
with m,, = 64, m; = 2. Now the image quality
appears as good as the full data image. Essentially the
larger value of m,, now gives enough information to
characterize these SDPS.

Also, as in the spin echo case, with this large value
of m,, (1/4 of the full data, corresponding to a 3/4
data acquisition), a PFI made from the data of Fig.
15(a) using the zero-fill algorithm produces an image
that is as good as the BFC,IFC image. While the rea-
son for this is not obvious, it may indicate that the
artifacts produced by “one-sided” truncation of the
data at this value of m,, are reduced below the typi-
cal object structure and/or noise level.

CONCLUSION

The SDPS of spin echo DFT data are primarily of
low spatial frequency content. The most important
terms are the constant, linear and quadratic ones. In
one imaging system the constant phase shifts were
found to be principally due to differences in phase
between the frequency source and the detected signal
as a result of electronic delays. The linear shift was
found to be due to the spin echo not forming precisely
at the center of the data acquisition window due to
gradient offsets. The quadratic term was principally
due to phase shift of the rf energy as a result of the
conductive nature of the imaged object. No SDPS
that were clearly attributable to gradient eddy currents
were observed, probably due to careful electronic
compensation of the gradient amplifiers (up to Sth
order). While one would expect that the constant
phase shift could be anywhere in the + 7 range, the
X,y linear phase shifts should be able to be better con-
strained by pulse sequence timing adjustment to be
less than +67 over the FOV. The quadratic term
coefficient was observed to be less than +0.0001, but
this will depend on field strength, object conductivity
and rf coil design.

PFI images formed from data with such phase
shifts show objectionable artifacts that can appear as
bands or smearing in the x or y direction. Constant,
linear phase correction of the data in the x direction
confines the remaining artifacts to the y direction.
These remaining artifacts typically are a subtle smear-
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ing or apparent loss of resolution in the y direction.
Correction of only the x, y direction constant and lin-
car phase shifts was found to not be sufficient to pro-
duce artifact free PFI. When data beyond 11 = N/2 + 1
are acquired and included in the PFI the remaining
artifacts usually include a component with a spatial fre-
Juency near that of the data truncation frequency.
The PFI algorithms discussed here include the basic
algorithm, which is simply an invocation of Hemitian
symmetry, the BAX algorithm, which adds a straight-
forward x direction constant, linear phase correction,
the zero-fill algorithm, which doesn’t invoke Hermit-
ian symmetry and the BFC,IFC algorithms, which
attempt to correct the y-direction phase shifts to var-
wous degrees. For small values of m,,, with typical
~SDPS only the BFC,IFC algorithms perform satisfac-
rorily for spin echo data. The BFC algorithm pro-
duces subtle artifacts due to data truncation and
biases in the phase estimate from the window func-
tion. The IFC algorithm reduces these artifacts but
leaves higher order phase estimation bias. The extra
computational effort of the iterative IFC algorithm
does not seem to warrant its use for the slight im-
provements it makes. For large values of m,, (e.g.,
2’4 data acquisition) the zero fill algorithm, which is
computationally simpler, also gives adequate results.
The algorithms presented here implicitly assume
that the SDPS are of low spatial frequency and tem-
porally invariant. Data that are acquired of moving
ehjects or with gradient refocused echoes will produce
images with phase shifts that violate these assump-
tons. As long as the motion is confined to small
regions, as in blood flow, the artifacts in the PFI
Iimages secem to be of the same character, although
different in detail, when compared to the full data
iinages. Adequate PF] images can be generated under
these conditions if large values of m,, are used. For

m,, = 64 (3/4 of full data acquisition) good PFI
images can be produced in many cases using either the
BCF or the simpler zero-fill algorithm.
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