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OPTIMIZATION OF BLOCKED DESIGNS IN FMRI STUDIES
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Blocked designs in functional magnetic resonance imaging (fMRI) are useful to localize functional
brain areas. A blocked design consists of different blocks of trials of the same stimulus type and is charac-
terized by three factors: the length of blocks, i.e., number of trials per blocks, the ordering of task and rest
blocks, and the time between trials within one block. Optimal design theory was applied to find the opti-
mal combination of these three design factors. Furthermore, different error structures were used within a
general linear model for the analysis of fMRI data, and the maximin criterion was applied to find designs
which are robust against misspecification of model parameters.
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1. Introduction

Functional magnetic resonance imaging (fMRI) is widely used in cognitive neuroscience to
localize human brain functions (Owen, Epstein & Johnsrude, 2003; Chein & Schneider, 2003).
It is also applied to determine the related brain areas to psychiatric disorders, e.g., schizophrenia
(Honey & Bullmore, 2002). Since its invention in the early 1990s, fMRI has led to major ad-
vances in understanding the neural mechanisms that underlie cognitive processes, e.g., percep-
tion, attention, language, and memory (Chein & Schneider, 2003). It has established a strong link
between cognitive psychology and neuroscientific research. Compared with other neuroimaging
methods as, e.g., Positron Emission Tomography (PET), fMRI has advantages in terms of in-
creased spatial resolution (Di Salle, Formisano, Linden, Goebel, Bonavita, Pepino, Smaltino &
Tedeschi, 1999). However, one major drawback of fMRI is the low signal-to-noise ratio (SNR).
To overcome this weakness, optimal design of fMRI experiments is helpful to increase the signal-
to-noise ratio (Josephs & Henson, 1999).

The fMRI signal in most studies is based on the bold-oxygen-level-dependent (BOLD) con-
trast which is based on magnetic properties of oxygenated and deoxygenated blood and hemody-
namic processes like regional cerebral blood flow (rCBF) caused by neural activity (Logothetis &
Wandell, 2004). The hemodynamic response to one short stimulus can be described by a hemody-
namic response function (HRF) (Friston, Jezzard & Turner, 1994). The double gamma function
is mostly employed as HRF and models the temporal evolution of the hemodynamic response
over a period of around 30 s (Friston, Fletcher, Josephs, Holmes, Rugg & Turner, 1998). There
are mainly two different types of design in fMRI experiments: blocked designs and event-related
designs (Aguirre & D’Esposito, 1999; Chein & Schneider, 2003). In blocked designs, trials of
one condition are performed in blocks which can be a task condition or a rest condition, i.e., null
block, with no systematic or task-related activation. In contrast, event-related designs can have a
random order of trials and a fixed or random time interval between trials (Buckner, Bandettini,
O’Craven, Savoy, Petersen, Raichle & Rosen, 1996; Dale & Buckner, 1997; Rosen, Buckner &
Dale, 1998).
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Blocked and event-related designs are optimal for different purposes, e.g., blocked designs
are better for detection of activated brain areas assuming a certain HRF shape, whereas event-
related designs are useful to estimate the shape of the HRF (Friston, Zarahn, Josephs, Henson
& Dale, 1999; Chein & Schneider, 2003; Birn, Cox & Bandettini, 2002; Liu, Frank, Wong &
Buxton, 2001; Liu & Frank, 2004; Liu, 2004). In the fMRI literature, detection of activation is
referred to as detection power, whereas estimation of the HRF is called estimation efficiency.
In this paper, the focus is on blocked designs and detection power, but this approach can be
applied to event-related designs or estimation efficiency as well. Several authors have generated
random event-related designs and determined their estimation efficiency (Buračas & Boynton,
2002; Hagberg, Zito, Patria & Sanes, 2001; Wager & Nichols, 2003; Kao, Mandal, Lazar &
Stufken, 2009). Maus, van Breukelen, Goebel, and Berger (2010) apply the maximin approach
to locally optimal event-related designs for estimation efficiency.

The performance of fMRI experiments is very expensive and time consuming. A scanner
session for one subject might take one hour which may cost between $200 and $1000 per hour,
not including additional expenses such as subject fees, equipment, and staff salaries (Culham,
2006). The number of subjects and repeated measurements may be restricted due to budgetary
constraints. Thus, it is necessary to minimize costs and to maximize the efficiency of the estima-
tors. The purpose of this study is to maximize the efficiency within a fixed budget.

Some general recommendations for blocked designs are given in the fMRI literature. The
most simple design is the alternating boxcar design in Figure 1a which consists of alternations be-
tween blocks of two conditions. One of these conditions can be a null block where no systematic
or task-related stimulation takes place. Thus, the design has the following structure: ANANAN
(boxcar design), where A refers to a task condition, and N to a null block, or ABABAB, where
A and B refer to two different task conditions. Mohamed, Tracy, Faro, Emperado, Koenigsberg,
Pinus, and Tsai (2000) showed that an alternating block order ANANAN was more effective than
a continuous design AAANNN. Similarly, Nakai, Matsumura, Nose, Kato, Glover, and Matsuo
(2003) showed that although they used the same number of task blocks A and B in each blocked
design, detection of functional activity depended on the ordering of task blocks and null blocks,
i.e., block order ANBN, ABN, AB, or order AN followed by BN.

Recommendations in the literature for optimal block length in an alternating boxcar de-
sign range from 14 to 20 seconds (Chein & Schneider, 2003; Aguirre & D’Esposito, 1999;
Wüstenberg, Giesel & Strasburger, 2005; Skudlarski, Constable & Gore, 1999; Smith, Jenk-
inson, Beckmann, Miller & Woolrich, 2007). Further, to produce a strong and homoge-
neous signal, it is optimal for detection to use a short time interval between the presenta-
tion of stimuli inside blocks, i.e., short stimulus asynchrony (SOA) (Chein & Schneider, 2003;
Josephs & Henson, 1999). However, the duration of this interval depends on stimulus duration
and the type of stimulus, e.g., a block with a mental rotation task may need a longer time between
presentation of trials than a block with trials of a lexical decision task (Chein & Schneider, 2003).

The approach by Nakai et al. (2003) of fixing the number of task blocks and varying the
number of null blocks resulted in different total experimental time periods for each design. In
contrast, in our study a fixed time period for the experiment was assumed to determine which
design is optimal within a fixed time period and resultant fixed budget. Additional to the block or-
der, the optimization was expanded to other design factors, i.e., stimulus onset asynchrony (SOA)
and block length which are displayed in Figure 1b. The SOA gives the time between presentation
of two stimuli. To our knowledge, there is no study which has considered the optimization of
blocked designs considering the influence from several varying design factors simultaneously,
i.e., SOA, block length, and block order.

This optimization depends on the statistical model for the analysis of fMRI data and the
optimality criterion. The general linear model is employed to model fMRI data at one three-
dimensional imaging unit (Friston, Holmes, Poline, Grasby, Williams, Frackowiak & Turner,
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FIGURE 1.
Blocked designs.

1995). Several approaches to model the error have been undertaken, such as an uncorrelated
error structure, which is the most simple case. However, it is known that fMRI data and the
noise in fMRI data are temporally correlated and can thus be better fitted by a linear model with
correlated error, notably autoregressive error of order 1 (AR1) (Bullmore, Brammer, Williams,
Rabe-Hesketh, Janot, David, Mellers, Howard & Sham, 1996; Worsley, 2005; Chatfield, 2003)
and AR1 plus measurement error (AR1+ME) (Purdon & Weisskoff, 1998). Ignoring autocorrela-
tion will bias hypothesis-testing and confidence interval estimation as the error covariance matrix
and the degrees of freedom of test statistics are incorrectly estimated (Worsley & Friston, 1995;
Bullmore et al., 1996; Purdon & Weisskoff, 1998). According to Gautama and Van Hulle (2005)
AR1 is the most frequently applied.

In the literature several optimality criteria were proposed which are all functions of the co-
variance matrix of the parameter estimators in the linear model. In this paper, the determinant
or D-optimality criterion, the trace or A-optimality criterion, and the contrast or c-optimality
criterion (Atkinson & Donev, 1996, Chapters 4, 10; Silvey, 1980) were used, and these will
be explained in Section 3.1. As far as we know, the D-optimality criterion, has not been con-
sidered before for optimization of fMRI experiments. Methods from signal processing like
power spectrum analysis have been applied to determine the optimal block length (Aguirre &
D’Esposito, 1999), whereas the A-optimality criterion has mostly been applied for optimization
of event-related designs (Dale, 1999; Friston et al., 1999; Liu et al., 2001; Liu & Frank, 2004;
Wager & Nichols, 2003; Kao et al., 2009). Friston et al. (1999) have also used the c-optimality
criterion to optimize detection power for contrasts between stimulus effects.

However, A-, D-, and c-optimal designs depend here on the model parameters, e.g., the
autocorrelation in an AR1 error structure, and are thus only locally optimal. This problem will
be solved by using the maximin criterion based on a relative efficiency measure. The maximin
approach has been applied in optimal design theory to construct designs which are robust against
misspecification of parameters in various models, e.g., the linear mixed model (Berger & Tan,
2004; Ouwens, Tan & Berger, 2002) or exponential regression models (Dette, Martinez Lopez,
Ortiz Rodriguez & Pepelyshev, 2006). The effect of autocorrelation on optimal design has been
studied before in the fMRI literature by assuming fixed parameter values in the error structure
or by using real fMRI noise (Aguirre & D’Esposito, 1999; Smith et al., 2007; Wager & Nichols,
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2003; Zarahn & Friston, 2002; Buračas & Boynton, 2002; Burock & Dale, 2000). As a result,
the found optimal designs may not be robust against misspecification of these parameters.

To summarize, the objective of this paper is to determine the optimal blocked design for
fMRI studies with respect to detection power. Three design factors, namely block length, order-
ing of blocks, and time between trials within one block, will be considered simultaneously to
find the optimal combination of these factors. The time period of the experiment is assumed to
be fixed. Furthermore, the maximin criterion is applied to solve the problem of local optimality
due to a temporally correlated noise structure.

The outline of this paper is as follows. In Section 2.1 the general linear model is presented.
For numerical calculations, a specific hemodynamic response function was chosen, which is in-
troduced in Section 2.1. The different covariance matrices according to the different error struc-
tures are explained in Section 2.2. The results of our analysis of a blocked experiment are pre-
sented in Section 2.3, confirming the assumptions made in Section 2.1. The different optimality
criteria, the maximin criterion, and the chosen values for the design factors SOA, block length,
and block order are presented in Section 3. The results are described in Section 4 separately for
the different error structures and optimality criteria. Finally, in Section 5 results are discussed,
and conclusions are presented.

2. Model

2.1. General Linear Model

Considering an experiment with two stimulus types A and B, the fMRI signal Y at one voxel
of one subject can be described by a general linear model (GLM). A voxelwise analysis is then
performed, where one voxel corresponds to one three-dimensional imaging unit, for instance,
3 mm × 3 mm × 3 mm, in the subject’s brain. The model is of the form

Yi = Xi1β0 + Xi2β1 + Xi3β2 + Xi4β3 + εi, (1)

where Yi refers to the signal at time point i (i = 1, . . . , n), and n is the number of time points of
the experiment. By the model in Equation (1), one fMRI run which is one continuously scanned
time period can be described. The signal is normally sampled within the range of 5–10 min
to avoid subject’s fatigue and with a repetition time (TR) of several seconds, e.g., 2–4 s, to
guarantee full brain coverage (Henson, 2004). The unknown parameters are the intercept β0,
effects β1 and β2 of stimuli A and B, and an effect β3 for linear trend. The main interest is in the
stimulus effects β1 and β2. In addition, a random error εi is present. The expected hemodynamic
responses at time point i are reflected by Xi2 and Xi3, the linear trend is modeled by regressor
Xi4 = (i − 1) · TR + 1 ∀i, and the fMRI baseline signal by Xi1 = 1 ∀i.

To calculate the hemodynamic response, a specific hemodynamic response function has to
be assumed. In this paper, the sum of two gamma functions was applied (Friston et al., 1998):

h(t) = b
a1+1
1 · ta1 · exp(−b1t)

�(a1 + 1)
− b2

a2+1 · ta2 · exp(−b2t)

c · �(a2 + 1)
(2)

with parameters a1, b1, c, a2, and b2, where a1/b1 gives the time to the maximum for the positive
gamma function (time to peak), and a2/b2 gives the time to the minimum for the negative gamma
function (time to undershoot). Parameter c influences the ratio of the amplitudes of the positive
and negative gamma function (peak-to-undershoot amplitude ratio). The first gamma function,
known as the positive gamma function, models the peak of the hemodynamic response, while
the second gamma function, the negative gamma function, models an undershoot. The HRF was
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parameterized by a1 = 5, b1 = 1, c = 6, a2 = 15, and b2 = 1 that are appropriate for a brief
stimulus (Henson, 2004), e.g., 1 s. The resulting HRF can be seen in Figure 2a. Additionally,
it is common to assume that the hemodynamic response acts as the output of a linear time-
invariant system (LTI) (Boynton, Engel, Glover & Heeger, 1996; Cohen, 1997; Dale & Buckner,
1997; Henson, 2004). Linearity means that the property of superposition is fulfilled so that the
hemodynamic responses to successive stimuli are summed up to the final hemodynamic response

FIGURE 2.
Hemodynamic response.
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as illustrated in Figure 2b. Invariance implies that the form of the hemodynamic response is
independent of time (Henson, 2004).

Assuming linearity, invariance, and a specific HRF, the expected hemodynamic response
Xij at time point i to stimulus A, resp. B, can then be described mathematically by convolution
to model the enduring hemodynamic response function after stimulus presentation and the su-
perposition of hemodynamic responses to successive stimuli. The following equation gives the
convolution s ⊗ h of a stimulus vector sA, resp. sB, with the HRF vector h at time point i:

Xi2 = (sA ⊗ h)(i) =
k+1∑

l=1

sA(i − l + 1)h(l), (3)

Xi3 = (sB ⊗ h)(i) =
k+1∑

l=1

sB(i − l + 1)h(l). (4)

The vectors sA and sB ∈ R
n have entries 0 and 1, where 0 indicates no stimulus presentation of

A, resp. B, at time point i, and 1 indicates a stimulus presentation of A, resp. B, at time point
i, i = 1, . . . , n. The HRF vector h represents the hemodynamic response function sampled at
0,1TR,2TR, . . . , kTR, where k + 1 is the assumed number of time points for the hemodynamic
response function.

In matrix notation, the general linear model in Equation (1) can be written as

Y = Xβ + ε. (5)

The vector Y = (Y1, . . . , Yn)
T is the fMRI signal, while β is the vector of the parameters

β0, β1, β2, and β3. The design matrix X is an n× 4 matrix and contains the entries Xij in the j th
column. The errors ε are assumed to be normally distributed with covariance matrix cov(ε).

The generalized least squares (GLS) estimator of β is given by

β̂ = [
XT cov(Y )−1X

]−1XT cov(Y )−1Y. (6)

The GLS estimator is the best linear unbiased estimator. Assuming the errors to be normally
distributed, it is also the maximum likelihood estimator. The 4 × 4 covariance matrix of β̂ is
equal to

cov(β̂) = [
XT cov(Y )−1X

]−1
. (7)

2.2. Covariance Structure

Three different covariance structures for the errors in Equation (1) were considered, always
assuming the error to be normally distributed. Firstly, the error in the voxelwise GLM was as-
sumed to follow an AR1 structure (Chatfield, 2003):

ε1,i = ρ ε1,i−1 + δ1,i ∀i ∈ {1, . . . , n}, (8)

where ρ ∈ (−1,1) and δ1,i ∼ N(0, σ 2
1 ) ∀i are independent identically distributed, i.e., uncorre-

lated noise. The AR1 model involves stationarity, which means that E(ε1,i ) = 0 and var(ε1,i ) =
σ 2 ∀i ∈ {1, . . . , n}. Another property of AR1 is that the covariance of the errors decreases with
their separation in time: cov(ε1,i , ε1,j ) = ρ|i−j | · σ 2, where |ρ| < 1 and i, j = 1, . . . , n. The
symbol ρ denotes the autocorrelation parameter.

Secondly, AR1+ME was considered for the error structure, and thirdly, uncorrelated error
(UE). The AR1+ME model is described by the equation

ε2,i = ε1,i + δ2,i ∀i ∈ {1, . . . , n}, (9)
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where ε1,i is defined as in Equation (8), and δ2,i ∀i are normally distributed with expectation
0 and variance σ 2

2 and are independent identically distributed. AR1+ME is more general than
AR1, whereas UE is a special case of AR1 and AR1+ME. In the fMRI literature, AR1+ME
is often referred to as AR1 plus white noise (Purdon & Weisskoff, 1998); and the AR1 term in
Equation (8) is supposed to model the correlated structure of fMRI noise, whereas the measure-
ment error δ2 models scanner noise.

The covariance matrix cov(ε2) for AR1+ME consists of the covariance matrix σ 2V for
the AR1 term plus a covariance matrix for the measurement error δ2. Thus, the covariance
matrix of ε2 is given by cov(ε2) = σ 2V + σ 2

2 In, where Vij = ρ|i−j | for i, j ∈ {1, . . . , n}, and
In is the identity matrix of dimension n. The correlation between two errors is then given by

corr (ε2,i , ε2,j ) = σ 2ρ|i−j |
σ 2+σ 2

2
.

2.3. Checking of Assumptions

Assumptions about the specific form of the HRF and the linearity of the HRF were made in
Section 2.1. It is known that there are problems of linearity for rapidly following trials. Dale and
Buckner (1997) showed that for an SOA equal to 2 s, hemodynamic responses of stimuli add in a
roughly linear way, but subtle deviations from linearity were obtained. One result of nonlinearity
is a decrease in the amplitude, i.e., the hemodynamic response received by assumption of linearity
is higher than the real hemodynamic response. This effect is called saturation (Henson, 2004).
Furthermore, the shape of the hemodynamic response is slightly changed (Dale & Buckner,
1997).

While nonlinearity is a complex issue of which the causes and behavior are not completely
understood, the reduction of amplitude for following trials in a sequence of events has been
consistent in studies (Pollmann, Wiggins, Norris, von Cramon & Schubert, 1998; Huettel &
McCarthy, 2000; Miezin, Maccotta, Ollinger, Peterson & Buckner, 2000; Wager, Vazquez, Her-
nandez & Noll, 2005). We decided to consider the effect of amplitude reduction by scaling the
amplitude of the HRF. This is a simple approach to nonlinearity, which has already been applied
by Wager and Nichols (2003) and Heckman, Bouvier, Carr, Harley, Cardinal, and Engel (2007).

Data from a blocked experiment were used to check our assumptions about the hemo-
dynamic response and the AR1 model. The fMRI data were acquired with a gradient-echo
EPI sequence (TE = 60 ms, FA = 90°, TR = 2000 ms, FOV = 200 × 200 mm, voxel size =
1.6 mm × 1.6 mm × 3 mm, 250 scans) and are an extended version of the experiment described
in Formisano, Esposito, Di Salle, and Goebel (2004). Their experiment had two experimental
conditions (left and right hemifield visual stimulation) alternated with fixation blocks, while our
data were derived from an experiment with three experimental conditions (left, right, and both
hemifield visual stimulation) alternated with fixation blocks.

Colored images of natural objects were presented to one healthy subject for 1 s within
a stimulation block and directly replaced by the next image without an interstimulus interval
(Formisano et al., 2004). Further details on experimental procedures and materials can be found
in Formisano et al. (2004) and Goebel, Muckli, Zanella, Singer, and Stoerig (2001). The task
blocks were of length 36 s, whereas the fixations blocks were of length 14 s or 18 s. Preprocess-
ing was performed using Brain Voyager QX (Brain Innovation, Maastricht, The Netherlands,
www.brainvoyager.com) and included 3D motion correction, slice-time correction, and a high-
pass filter (including linear trend removal) in the time domain. Finally, the data were transformed
to the Talairach space. The averaged time course from a region of interest (ROI) consisting of a
volume of 773 mm3 was analyzed.

The assumption about the error structure was checked on the residuals of this time se-
ries after fitting a general linear model with uncorrelated errors. The residuals could be bet-
ter described by an AR1 structure than by uncorrelated error or moving average (MA). Fur-

http://www.brainvoyager.com
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FIGURE 3.
Observed time course from region of interest of blocked experiment described in Section 2.3 and predicted time course
from the general linear model based on double gamma function and AR1 error structure.

thermore, the assumption of the specific form of the HRF was controlled by assuming differ-
ent HRF models from the literature (Cohen, 1997; Boynton et al., 1996) instead of the dou-
ble gamma function. We fitted the data from the blocked experiment by a general linear model
based on the double gamma function in Equation (2) with a1 = 5, b1 = 1, c = 6, a2 = 15, and
b2 = 1 and by general linear models based on single gamma functions (Boynton et al., 1996;
Cohen, 1997). The single gamma function of Boynton et al. (1996) was parameterized by n = 3,
δ = 2.5, and τ = 1.25; and the single gamma function of Cohen was parameterized by k = 1. The
double gamma function fitted the data slightly better with an R-square equal to 0.70, whereas the
single gamma functions as applied by Boynton et al. (1996) or Cohen (1997) resulted in an
R-square of 0.65 or 0.67.

Furthermore, different parameter values for the double gamma function were applied to
check for effects of nonlinearity on the HRF shape in our data. However, the R-square values
showed that the canonical parameter set described the HRF best. Figure 3 shows the observed
time course in the region of interest and the predicted time course from our general linear model
based on a double gamma function and AR1 error structure. It can be seen that a good fit to the
observed time course is given by our predicted time course. The double gamma HRF with AR1
noise was therefore used in the sequel for design optimization.

3. Methods

Computations were performed with MATLAB (The MathWorks Inc., Natick, MA), and the
default double gamma function from the MATLAB toolbox BVQXtools_v07b (Brain Innovation,
Maastricht, The Netherlands) was applied. The MATLAB code is available upon request from
the first author. Measurements of Yi were supposed to be taken with a sampling rate, repetition
time (TR), of 2 seconds. Covariance matrices cov(β̂) were obtained by numerical computations
using Equation (7) based on the values for the error parameters described in Section 3.3 and the
values for the design factors given in Section 3.4. The covariance matrices are independent of a
specific value of the β ′s as Equation (7) shows.
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3.1. Optimality Criteria

Considering general linear models, each design ξ in the design space 
 results in a specific
design matrix Xξ . In our case, the design space 
 was finite and consisted of blocked designs
characterized by the factors SOA, block length, and block order. We will denote by β̂ξ the esti-
mator of β in Equation (6) which was obtained by the design matrix Xξ of design ξ .

The D-optimal design minimizes the determinant of the covariance matrix cov(β̂) (Atkinson
& Donev, 1996, Chapter 10),

Det
[
cov(β̂ξ )

] = Det
{[

XT
ξ cov(ε)−1Xξ

]−1} (10)

over all designs ξ in 
. One important property of the D-optimal design is that it results in
minimizing the volume of the confidence ellipsoid of the parameters. Furthermore, the optimal
design remains unchanged for different scaling of the variables in the design matrix X. The D-
optimality criterion is frequently applied in many research areas because of these two useful
properties.

If one is only interested in the variances of estimators, the A-optimality criterion may be
used, which focuses on the trace of the covariance matrix cov(β̂) (Atkinson & Donev, 1996,
Chapter 10). A design is called A-optimal if it minimizes

Tr
[
cov(β̂ξ )

] = Tr
{[

XT
ξ cov(ε)−1Xξ

]−1} (11)

over all designs ξ in 
. So, the A-optimal design minimizes the average variance of the parameter
estimators.

The baseline effect β0 and effect of linear trend β3 are in general of no interest in fMRI
research. We therefore use a special case of the L-optimality criterion (Atkinson & Donev, 1996,
Chapter 10), which we will call the AS -optimality criterion, and the DS -optimality criterion to
concentrate on a subset S of parameters (Atkinson & Donev, 1996, Chapter 10) βS = (β1, β2)

T ,

which represents the stimulus effects of interest. The AS -optimal design minimizes the trace of
cov(β̂S

ξ ), whereas the DS -optimal design minimizes the determinant of cov(β̂S
ξ ) for all designs

ξ in 
.
By subtraction of effect parameters for two stimuli it can be determined which brain region

is involved in a certain process. The area of seeing faces (Fusiform Face Area, FFA) is, e.g.,
detected by comparing the hemodynamic response to faces with the response to simple objects.
Optimizing then means minimizing the variance of a parameter contrast and leads to a c-optimal
design. The c-optimal design minimizes

var
(
cT β̂ξ

) = cT cov(β̂ξ )c (12)

for a given contrast vector cT ∈ R
4 with

∑4
i=1 ci = 0 over all designs ξ in the design space 
.

Here, the difference β1 −β2 given by the contrast vector cT = (0,1,−1,0) is of interest. To sum-
marize, five different optimal design criteria are applied: the D-, DS -, A-, AS -, and c-optimality
criteria.

The relative efficiency (RE) can be used to compare a design ξ with the optimal design ξ∗.
If we denote our optimality criterion by ψ , the relative efficiency of ξ versus ξ∗ is defined as

RE(ξ |ξ∗) = ψ(cov(β̂ξ∗))

ψ(cov(β̂ξ ))
. (13)

For the D- and DS -optimality criteria, the pth root has to be taken, where p equals the number
of parameters, i.e., p = 4 for β and p = 2 for βS . By this, the relative efficiency has the same
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interpretation for all optimality criteria, namely, that the inverse of the RE gives the number
of times the design ξ has to be replicated to be as efficient as the optimal design. The relative
efficiency of an arbitrary design versus the optimal design lies between 0 and 1, with a relative
efficiency close to 1 being most desirable.

3.2. Maximin Approach

The covariance matrix cov(β̂) depends on the parameters of the error structure, so the op-
timal design depends on ρ in the case of AR1 or on ρ and σ 2/σ 2

2 in the case of AR1+ME.
This is called local optimality. There are several approaches to handle local optimality, e.g., the
sequential approach (Silvey, 1980), the Bayesian design approach (Chaloner & Verdinelli, 1995;
Atkinson & Donev, 1996, Chapter 19), and the maximin approach (Ouwens et al., 2002;
Silvey, 1980, p. 59). Due to the high costs related to fMRI experiments, the sequential approach
which needs several performances of experiments is not advantageous (Flaherty, Jordan & Arkin,
2006). The Bayesian approach requires assumptions about the prior distribution of the unknown
parameters. For fMRI experiments, such a prior distribution is, however, not generally known for
the parameters in the error structure. One disadvantage of the Bayesian approach is furthermore
that the chosen optimal design may be efficient for the most likely parameter values but ineffi-
cient for a certain parameter value (Pronzato & Walter, 1988). Then the optimal design is not
robust against misspecification of the parameter values.

The maximin approach maximizes the smallest relative efficiency and leads thereby to de-
signs which are robust against misspecification of parameters if the maximum relative efficiency
is high. We are searching for the maximin design (MMD) which fulfills the following condition
in case of AR1 and for ρ in the parameter space P1 ⊆ [0,1):

MMD = arg max
SOA,BL,BO

min
ρ∈P1

RE(ξ |ξ∗). (14)

Firstly, given a certain optimality criterion and ρ, the optimal design ξ∗ is determined. Secondly,
for each design ξ with certain SOA, block length BL, and block order BO, the minimum relative
efficiency (RE) is determined over the possible autocorrelation parameter values ρ in P1. Thirdly,
out of these minimum RE values the design with the largest value is chosen to be the maximin de-
sign for the optimality criterion. For AR1+ME and ρ × (σ 2/σ 2

2 ) in P1 ×P2 ⊆ [0,1)×[0,+∞),
the condition is

MMD = arg max
SOA,BL,BO

min
ρ× σ2

σ2
2

∈P1×P2

RE(ξ |ξ∗). (15)

The maximum value in Equations (14) and (15) is called the maximin value (MMV).

3.3. Search for Locally Optimal Design

For AR1, the autocorrelation parameter ρ was varied by steps of 0.001 to detect optimal
designs for a given ρ. We assumed ρ to lie in the interval [0,0.5], as this range includes common
values of correlation for two successive measurements Yi and Yi+1, respectively εi and εi+1, in
fMRI data with TR = 2 s. For the AR1 model, ρ is the correlation of two successive data points,
whereas for AR1+ME, the correlation is ρσ 2/(σ 2 + σ 2

2 ).
For AR1+ME, the ratio σ 2/σ 2

2 was considered to be 0.25, 0.5, 1, 2, and 4. In order to have
a correlation of 0 to 0.5 between two adjacent measurements just as for AR1, we chose the au-
tocorrelation parameter ρ to be in the interval [0,0.7]. This results in a correlation of maximally
0.56 for all ratios of the variances. Lower values of the ratio will lead to an approximation of
AR1+ME to the uncorrelated error structure, whereas higher values of the ratio will resemble
the AR1 structure. The autocorrelation parameter was varied by steps of 0.01 to find an optimal
design for a given ρ and given ratio σ 2/σ 2

2 .
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3.4. Design Factors

We chose to fix the stimulus duration at 1 s, thus not letting it play a role in our optimization.
It is reasonable to choose an SOA close to the stimulus duration because this will result in a
strong fMRI signal and no time between trials is wasted. Therefore, SOAs of 1, 2, and 3 seconds
were applied.

Block length was the time from the first to the last trial in this block plus SOA. As block
lengths usually lie between 10 s to 1 min (Chein & Schneider, 2003; Donaldson & Buckner,
2001), we covered this range by using 10, 15, 20, 30, and 60 s of block lengths. To test for
the effect of the null blocks, we chose the following block orders: AB, ABN, and ANBN. The
order of blocks is fixed for one design but repeated several times within the given time interval.
For example, block order AB describes an experiment with repetition of AB (ABABABAB. . . )
until the experiment is finished. In many studies it is necessary to use an active control condition
instead of a resting condition. The null condition refers here to simple control conditions with
no systematic or task-related activation, e.g., a fixation task or passive visual task, while more
complex control conditions are considered as another task/stimulus type.

As time interval for the full modeled experiment, 720 s were needed because within this
period, the block orders ANBN, AB, and ABN can be applied with several alternations and
blocks of maximally 60 s. To cover the hemodynamic response to the last trial, the time period
was finally expanded to 750 s for all designs resulting in 375 time points because TR was 2 s.

4. Results

4.1. Autoregressive Error of Order 1

The maximin design for all optimality criteria had block length equal to 15 s and an SOA
of 1 s. For the D-, DS -, and AS -optimality criteria, the maximin design had block order ABN,
for the A-optimality criterion, the maximin block order was ANBN, and for the c-optimality
criterion, the block order was AB. The locally optimal designs had block lengths of 10 s, 15 s,
or 20 s for some subintervals of [0,0.5] for ρ. Block length had a small effect on the minimum
relative efficiency in comparison with block order and SOA. The effect of SOA was stronger
than might be expected. As a result, for all optimality criteria except the D-optimality criterion,
a design with SOA = 2 s resulted in only 25%–33% of the minimum relative efficiency of a
design with SOA = 1 s, if block length and block order were kept constant. SOA = 3 s resulted
in 11%–16% of the minimum relative efficiency of SOA = 1 s for all optimality criteria except
the D-optimality criterion. For the D-optimality criterion, these values were 50% comparing an
SOA of 2 s with an SOA of 1 s and 34% comparing 3 s with 1 s. The separate results from each
optimality criterion are further described below and can be seen in Figure 4, which shows the
minimum relative efficiencies for all designs and optimality criteria. Table 1 gives an overview
of the maximin designs.

Since centering time Xi4 in Equation (1) affects β0 and thereby potentially may affect the
A-optimal design, we also applied a centered linear trend, where Xi4 = (i − 1) · TR − 374 ∀i

instead of Xi4 = (i − 1) · TR + 1 ∀i as for the following results. The variance of the intercept
estimator var(β̂0) was smaller for the centered time trend, but this affected neither the locally
optimal design nor the maximin design. For all optimality criteria, the locally optimal design and
maximin design remained the same as for the uncentered time trend.

D- and DS -Optimality Criteria The minimum relative efficiencies for the D-optimality
criterion are presented in Figure 4a. The maximin value was equal to 0.97. Locally optimal were
the designs with block length 10 s or 15 s, SOA = 1 s, and block order ABN, although there was
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FIGURE 4.
Minimum relative efficiencies with AR1. MMD denotes the maximin design.

not much difference between ABN and ANBN. For all other block lengths than the optimal value
15 s, minimum relative efficiencies were slightly lower.
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The results for the DS -optimality criterion were similar to those for the D-optimality cri-
terion, as can be seen in Figures 4a and 4b. For the DS -optimality criterion, the maximin value
was equal to 0.94. The only difference seemed to be in the height of the minimum relative effi-
ciencies but not in the order of the various lines, i.e., designs. The same locally optimal designs
and the same maximin design (SOA = 1 s, block length 15 s, and block order ABN) as for the
D-optimality criterion were obtained.

A- and AS -Optimality Criteria Figure 4c shows the minimum relative efficiencies for the
A-optimality criterion. A-optimal were the designs with SOA = 1 s, BL = 10 s, 15 s, or 20 s
and block order ANBN. The design with SOA = 1 s, block length 15 s, and block order ANBN
was the maximin design. The AS -optimality criterion gave similar results as the A-optimality
criterion, except that the locally optimal designs and maximin design had block order ABN
instead of ANBN, see Figure 4d. The maximin values were 0.97 for the A- and 0.94 for the AS -
optimality criterion. Differences in minimum relative efficiency between ABN and ANBN were
mostly small for given SOA and block length.

For A- and AS -optimality criteria and for D- and DS -optimality criteria, it can be concluded
from Figures 4a–4d that the designs with null blocks performed generally better than AB for any
given SOA with little difference between ABN and ANBN. Furthermore, the effect of block
length on minimum relative efficiencies was not large.

c-Optimality Criterion Figure 4e shows that the maximin design had order AB, SOA = 1 s,
block length 15 s, and a maximin value of 0.99. Depending on ρ, the designs with SOA = 1 s,
BL = 15 s or 20 s, and order AB were locally optimal. Block order AB was for any given block
length and SOA more efficient than block order ABN, which in turn was more efficient than
block order ANBN. The minimum relative efficiencies increased from block length 10 s to 15 s
and decreased for higher block lengths than 15 s, except for order ANBN.

4.1.1. Costs of Choosing Nonoptimal Design Factors For the A-optimality criterion, the
maximin design (BL = 15 s, SOA = 1 s, BO = ANBN) had a minimum relative efficiency of al-
most 1, whereas changing either block order or SOA to the least optimal value leads to minimum
relative efficiencies smaller than 0.2. To exemplify the effect of choosing nonoptimal design fac-
tors in terms of costs, the results from the A-optimality criterion are therefore used as an extreme
case. If the SOA of the maximin design is changed from 1 s to 3 s, the minimum relative effi-
ciency becomes 0.14 in Figure 4c. This means that 1/0.14 ≈ 7.14 replications (7 runs) of this
design (SOA = 3 s, BL = 15 s, block order = ANBN) are needed to be approximately as effi-
cient as the maximin design. Assuming costs of $600 per hour, $875 instead of $125 would have
to be spent to obtain the same efficiency.

If the block order is changed to AB keeping SOA = 1 s and BL = 15 s, it can be calculated
that about 1/0.19 ≈ 5.26 replications (five runs) are necessary to be nearly as efficient as the
maximin design. With the same assumption of costs per hour as before, we obtain costs of $625
instead of $125. By changing the block length of the maximin design to 60 s, a minimum relative
efficiency of 0.87 is obtained in Figure 4c and 1/0.78 ≈ 1.28 repetitions. Thus, the design with
BL = 60 s is almost as efficient as the maximin design. In conclusion, SOA and block order had
a strong effect on costs, whereas block length had a weak effect on costs for the A-optimality
criterion.

4.1.2. Effect of Nonlinearity Based on the results by Binder, Rao, Hammeke, Frost, Ban-
dettini, and Hyde (1994), the effect of nonlinearity on design efficiency was studied by assuming
that the amplitude of the HRF was reduced to 81% of its canonical value in case of SOA = 1 s,
while SOA = 2 s or 3 s were assumed to give rise to the canonical HRF. For the A-, DS -, AS -,
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and c-optimality criteria, the minimum relative efficiency of SOA = 2 s was 38%–44% of the
minimum relative efficiency of the same design with SOA = 1 s (block length and block or-
der not changed), instead of 25%–33% for linearity. For the D-optimality criterion, a design
with SOA = 2 s had 62% instead of 50% of the minimum relative efficiency of a design with
SOA = 1 s. For the A-, DS -, AS -, and c-optimality criteria, SOA = 3 s resulted in 17%–21% of
the minimum relative efficiency of SOA = 1 s instead of 11%–16% for linearity, while for the
D-optimality criterion, this value was between 41% to 42% instead of 34%. In conclusion, an
SOA equal to 1 s was still the most efficient, but the effect of the SOA on design efficiency was
less strong if nonlinearity was taken into account.

4.2. Uncorrelated Errors and Autoregressive Errors Plus Measurement Error

For uncorrelated errors, the maximin approach is not needed because ρ = 0 and the optimal
design can be determined by comparing the relative efficiencies directly. The results were sim-
ilar to those of AR1 with two mentionable differences. Firstly, A-optimal was the design with
SOA = 1 s, block order ANBN, and BL = 20 s instead of 15 s; and secondly, c-optimal was the
design with SOA = 1 s, order AB, and BL = 20 s instead of 15 s, as can be seen in Table 1.

The same locally optimal designs as for AR1 were obtained for AR1+ME, except for the
c-optimality criterion, which had locally optimal designs with block lengths 10 s, 15 s, 20 s,
block order AB, and SOA = 1 s. Block length 10 s performed better than for AR1, as can be
seen in Table 1; and the effect of block length was slightly stronger than for AR1 with a stronger
decrease in minimum relative efficiencies for higher block length. Similarly to AR1, lower SOAs
performed better than higher SOAs; and null blocks were preferred by the D-, DS -, A-, and
AS -optimality criteria, whereas no null blocks were preferred by the c-optimality criterion.

Depending on both the ratio σ 2/σ 2
2 and the autocorrelation parameter ρ, the locally optimal

design differed in block length. However, the locally optimal designs had always an SOA equal to
1 s and block length 10, 15, or 20 seconds for all optimality criteria. The locally optimal designs
had block order ABN for the D-, DS -, and AS -optimality criteria, block order ANBN for the A-
optimality criterion, and block order AB for the c-optimality criterion. The maximin designs can

TABLE 1.
Maximin designs for AR1 and AR1+ME and the optimal designs for uncorrelated errors (UE).

Optimality criterion Error structure

AR1 UE AR1+ME

D SOA = 1 s, BL = 15 s, SOA = 1 s, BL = 15 s, SOA = 1 s, BL = 10 s,
order = ABN order = ABN order = ABN

DS SOA = 1 s, BL = 15 s, SOA = 1 s, BL = 15 s, SOA = 1 s, BL = 10 s,
order = ABN order = ABN order = ABN

A SOA = 1 s, BL = 15 s, SOA = 1 s, BL = 20 s, SOA = 1 s, BL = 15 s,
order = ANBN order = ANBN order = ANBN

AS SOA = 1 s, BL = 15 s, SOA = 1 s, BL = 15 s, SOA = 1 s, BL = 10 s,
order = ABN order = ABN order = ABN

c SOA = 1 s, BL = 15 s, SOA = 1 s, BL = 20 s, SOA = 1 s, BL = 15 s,
order = AB order = AB order = AB
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be seen in Table 1. For higher ratios of the variances σ 2/σ 2
2 , AR1+ME behaved more similar to

AR1 with regard to the locally optimal designs.

5. Discussion

The results of AR1 and AR1+ME did not differ much. This was expected as the AR1+ME
error structure approaches AR1 for higher ratios σ 2/σ 2

2 . Furthermore, for a smaller ratio of the
variances, the AR1+ME structure is approximating uncorrelated errors, and UE gave also similar
results as AR1. Therefore, the further discussion of results is restricted to the AR1 error structure.

The D-, DS -, and AS -optimality criteria gave very similar results with respect to the max-
imin design and the evaluation of block order ABN and ANBN. For all these optimality criteria,
the maximin design was the design with SOA = 1 s, block length = 15 s, and block order ABN.
Furthermore, block order ABN performed always slightly better than ANBN for a given SOA.
The maximin designs for the A- and c- optimality criteria differed only in block order: ANBN
for A- and AB for the c-optimality criterion.

The preference for block order AB of the c-criterion is in agreement with Smith et al. (2007),
who showed that for estimating a contrast between two task blocks no rest period (no null block)
is optimal. Similarly, Friston et al. (1999) found that for event-related designs, no null events
should be used to estimate the differential contrast. In contrast, designs with null blocks were
favored by the D-, DS -, A-, and AS -optimality criteria as null blocks are necessary for the esti-
mation of β0, β1, and β2.

Regarding SOA, we found that small SOAs resulted in higher values of the minimum relative
efficiencies if the other design factors are constant. This was expected because more trials in
one block cause an overlap of the hemodynamic responses leading to a higher total response
which simplifies the detection of activated areas. However, the magnitude of the effect of SOA
was larger than expected, e.g., for all optimality criteria except the D-optimality criteria, the
minimum relative efficiency decreased from SOA = 1 s to SOA = 2 s by at least 67% (D-
optimality criterion: exactly 50%) under linearity.

Optimal block lengths were 10 s, 15 s, or 20 s, but the effect of block length was small so
that the minimum relative efficiency did not change much for different block lengths. The small
effect of block length might be explained by the fact that only linear trends were considered, and
no other trends or aspects of noise, e.g., physiological noise, were included in the model. On the
other hand, the temporally correlated structure of fMRI noise is captured very well by AR1, and
results do not differ much between uncorrelated and correlated errors.

A conclusion from the results of the AS - and DS -optimality criteria is that null blocks are
recommendable to estimate the stimulus effects. To estimate the contrast between A and B, we
would advise to apply the block order AB. If there is interest in estimating the stimulus effects
and contrasts, order ABN will be a good choice as it outperformed ANBN in the results from
the c-optimality criterion and performed comparably to ANBN for the other optimality criteria.
Optimal stimulus onset asynchrony (SOA) should be as small as possible, and an optimal block
length should be in the range of 10 s to 20 s. However, the effect of block length was not strong
in comparison with the effect of SOA or block order. Thus, in planning an fMRI experiment, a
researcher may first decide on an appropriate SOA, then on the block order depending on the
effects or contrasts of interest, and finally on block length.

With respect to the choice of optimality criterion, the A- and AS -optimality criteria were
already applied in fMRI research (Dale, 1999; Liu et al., 2001; Wager & Nichols, 2003), but
there is no reason to generally prefer A- over D-optimality concerning the optimization of fMRI
experiments. An advantage of the A-optimality criterion is that the parameter estimators can be
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linearly weighted in the trace function (Conlisk & Watts, 1979) if there is more interest in one
parameter than in the other, but that was not the case in this study.

One often cited advantage of the D-optimality criterion is the independence of the D-
optimal design with respect to the scaling of the regressors. Furthermore, the D-optimal de-
sign results in a minimized confidence ellipsoid for the unknown parameters. A disadvan-
tage is that the D-optimal design may lead to minimization of the confidence ellipsoid in
only one direction and strong elongation of the ellipse along one axis (Sim & Roy, 2005;
Atkinson & Donev, 1996, p. 106). This can occur if the trials of the two stimuli A and B are
not presented equally often or if var(ε) is assumed to be heterogeneous. The comparable results
of the AS - and DS - optimality criteria for the maximin designs and locally optimal designs may
be explained by the homogeneity of the error variance and the fact that the regressors for stimulus
effects were time-shifted versions of each other. Modeling heterogeneity or unequal number of
trials is, however, beyond the scope of this paper.

So, for this study, there is no obvious choice between the A- or D-optimality criteria. We
do, however, recommend restricting to the optimization of the stimulus effects’ estimation, in
particular if more confounders are included in the model, e.g., quadratic trend effects. Thus, the
following optimality criteria remain: the c-optimality criterion for estimation of contrasts and the
AS - or DS -optimality criterion. Since the DS -optimality criterion results in a minimized confi-
dence ellipsoid of the estimators of interest, we prefer this optimality criterion for our modeled
experiment.

Further research is needed to determine to which extent the results depend on the parame-
terization of the double gamma function. For example, the optimal block length might increase
if the hemodynamic response function is more broad, and thus the power spectrum of the HRF
is higher at low frequencies. Liu et al. (2001) showed this for uncorrelated errors, but more re-
search also with correlated errors is needed. Furthermore, the optimal block order could differ if
the length and the strength of the undershoot is changed, e.g., more null blocks might be neces-
sary for a longer undershoot.

Another important aspect for further research is the extension of our model to mixed effects
models and the optimization of designs for second level analysis, which is nowadays common
in fMRI data analysis. Random effects are necessary to generalize inferences to the population
from which subjects are drawn. With regard to optimization of designs for these models, the
covariance matrix cov(β̂) in Equation (7) has to be adjusted by taking inter-subject and intra-
subject variance into account.
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