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In all Fourier-based NMR imaging methods the envelope of the normalized complex
FID signal in the rotating frame can be written (/)

S = f p(r) exp(i'yr . J: G(t’)dt’)dr [1]

where G(?) is the gradient of the magnetic flux density
G =VB, = (VB)-e., [2]

t is the time after the exciting 90° pulse, v is the magnetogyric factor, and p(r) the
effective spin density distribution at the point r. For times not much less than 7 the
right hand side of [1] should be multiplied by exp(—¢/73). To fix the ideas we shall
further assume that a thin layer of the sample at right angles to the z axis has been
selectively excited and that r is a vector in the xy plane. However, the argument will
be equally valid in the one- or three-dimensional cases.

Now, the Fourier transform of the spin density is defined as

509 = [ o(ere rde [3]
which implies that
S(@) = p(k(n)) [4]
with k(?) defined by
k() = v fo G(t"dt'. [5]

This is trivial in the case of a constant gradient. However, in the general case it allows
the following simple visual interpretation. With increasing ¢ the function k(z) describes
a trajectory scanning the k plane, the value of the Fourier transform p(k) of the spin
density distribution being given by the value S(¢) at each point of the trajectory.

In addition, we observe that according to the Riemann-Lebesgue lemma (2) the
value of p(k) will tend to zero when |k| tends to infinity. For all normal spin density
functions this decay with growing |k(?)| will be quite rapid. However, as long as the
spins have not been irreversibly defocused by the spin—spin relaxation the signal can
always be recalled by letting the trajectory return to the region of small |k| values,
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thus giving rise to an ‘“‘echo.” Since the time interval between the exciting 90° pulses
is determined by the relaxation time, failure to recall the signal as often as possible
prior to its final decay would thus imply sacrificing a potential source of information.

One way of recalling the signal, i.e., of producing an echo, is to switch the dominant
component of the gradient as it is done in the echo planar method (I, 6). Another
one is the utilization of 180° pulses although these will usually have to be accompanied
by switching one component of the gradient (usually the smaller one) in order to
avoid a mere repetition of one and the same echo (6). A 180° pulse will obviously
give rise to complex conjugation of the FID signal, i.e., to a change of the sign of k
and to a complex phase factor which is equal to —1 if the phase of the pulse carrier
wave is chosen in the usual way (with the field along the x’ axis in the rotating
coordinate system). This means that p(k(r)) will be equal to —S(¢) after an odd number
of 180° pulses.

In the case of periodically modulated field gradients a Fourier series expansion in
the time domain of the function exp(ik(7)-r) may be the best way of effecting the
image reconstruction (4, 5). However, the picture of the trajectory in the k plane
may provide a more direct and visual basis for the comparison of different methods
and for the construction of new variants. Some of the current NMR imaging methods
will now be examined from this unified viewpoint. Figure 1 shows the corresponding
trajectories in the k plane. For the sake of convenience we shall limit ourselves to
two-dimensional cases.

In the projection reconstruction method (Z, 6), Fig. la, a constant gradient is
applied in the direction #. No attempt is made to recall the signal and the whole
sample must be allowed to relax before another projection is performed. Figure 1b
illustrates the line scan method (7, 7) where a single projection is made of a selectively
excited narrow strip of the sample. In the Fournier imaging method (7, &), Fig. Ic, a
gradient in the y direction is imposed during the first part ¢, of the free induction
decay and the signal is then observed at a constant gradient in the x direction. The
experiment is repeated with different values of G, ¢, . In the echo planar imaging (EPI)
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FiG. 1. Scanning patterns in the k plane: (a) projection reconstruction method; (b) line scan method;
(c) Fourier imaging; (d) echo planar imaging method; (e) modified EPI method; (f) modified projection
reconstruction method.
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method (7, 3-5), Fig. 1d, the possibility of recalling the signal is fully utilized and
the k plane is scanned along a zigzag curve. The gradient switching scheme that
accomplishes this effect is shown in Fig. 2a. An echo appears each time when k,
attains a low value. It should be pointed out that the values of p for negative k, values
are easily obtained from the relation

p(—k) = p*(k) [6]

which is a consequence of p(r) being real.
In the EPI method, &, will be proportional to the time

ky = vGyt [7]

since G, is constant during the whole experiment. This may be utilized to investigate
the effect of the spin—spin relaxation factor exp(—i/73), which was omitted in Eq.
[1]. Expressing ¢ in k,, this factor becomes exp(—k,/vG,T>), i.e.,

S(1) = exp(—k,/vG,T2)p(k(1)). [8]

The spin density distribution calculated from the experiment will thus be equal to
the convolution of the true spin density function p(r) with the function
2’YGyT2
3 [9]
1+ ('Yny TZ)

which is the Fourier transform of exp(—|k,/vG,T5|). This complication which also
appears in Tropper’s work (4) may be corrected for by a simple deconvolution pro-
cedure.

One possible disadvantage of the EPI method is that the values of p(k) are given
on a zigzag trajectory in the k plane rather than on the points of a regular rectangular
lattice which might perhaps be more convenient from a computational point of view.
To illustrate the capabilities of the method of representation described above, a modified
scanning pattern has been devised, Fig. le. The corresponding gradient switching
scheme is shown in Fig. 2b. In this case the values of p(k) will be given on a rectangular
lattice of points and p(k) is easily obtained by an ordinary discrete Fourier transfor-
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Fi1G. 2. Gradient switching scheme in (a) the EPI method, and (b) the modified EPI method.
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mation. More generally, it is easy to construct a gradient time dependence corre-
sponding to any arbitrary scanning path k() in the k plane, since we have

G(1) = (1/y)dk(2)/dr). [10]
As an example, let us take a spiral scanning scheme

{kx = at cos bt
k, = at sin bt

[11]

which is obtained if the gradient has the following time dependence:

{Gx = a cos bt — abt sin bt

12
G, = a sin bt + abt cos bt. [12]

A scanning pattern with trajectories in the form of concentric circles might be preferable
from a computational point of view. However, it is not the purpose of this com-
munication to enter into a detailed discussion of the advantages or disadvantages of
different experimental techniques. It would, of course, also be possible to improve
the projection reconstruction method by recalling the signal and performing several
successive projections after each excitation, Fig. If.

Since the relaxation causes a decrease of the signal amplitude with time it might
be advantageous to reverse the scanning pattern by starting the scanning in the exterior
regions of the k plane since the signal has its lowest amplitude in these parts. This
would be equivalent to a kind of apodization or filtering.

Naturally, the whole arsenal of digital image processing developed in optics is
directly applicable to NMR imaging. In fact, this kind of processing is greatly facilitated
by the fact that the primary data are obtained in the form of the Fourier transform
of the spin density distribution which means that no extra computational work is
required for the filtering. In particular, the close analogy between |k|nh.x and the
numerical aperture in optics should be pointed out.

As a final application of this technique of visualization it is amusing to see how
additional information could be obtained even in the one-dimensional line scan
method. The most obvious extension of this method consists of recalling the signal
one or several times by simply changing the sign of the gradient G,. It is, however,
also possible to obtain some information about the spin density variation in a direction
perpendicular to the direction of the strip. If the strip is limited by y, — Ay/2 and
Yo + Ay/2 where Ay is a small quantity let us assume that the spin density function
can be approximated by a truncated Taylor expansion

p(x, ¥) = p(x, yo) + (¥ — yo)p'\(x, yo) = f(x) + (¥ — yo)g(x). [13]
We then obtain

+oo yo+Ay/2
S(1) = J: f [f(x) + (v — yo)g(x)] explilk.x + k,y)}dxdy

yo—ay/2

= 2 exp(ik,yo) sin (k,Ay/2)(1/k)f (ko) + (iAy/k,)[cos (k,Ay/2)
— 2 sin (k,Ay/2)/k,Ay] explikyyo)g(ky).  [14]
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The first measurement is made with G, = 0 and at a constant G, so that k, = vGxL.
Then

S() = (AWf(k). [15]

Then k, is increased from 0 to 27/Ay by applying a gradient in the y direction of
strength G, = 2w/yAyAt for a time At, after which the sign of G, is changed and the
following signal is obtained:

S = (A’ g(k)/2 [16]
where we have discarded the irrelevant phase factor —i exp(2xiy,). A mathematically

more exact interpretation of this experiment would be in terms of the Fourier com-
ponents of p(x, y) as a function of y.

The graphical method might even be extended to include approximately the case
of a moving spin distribution as will be briefly outlined below. If p(r, v) denotes the

probability density of spins at the point r moving with the velocity v, the FID signal
will be approximated by

S = ff p(r, v) exp(i'yr . J: G(t’)dt') exp(i'yv . J: t’G(t')dt’)drdv [17]

at short times ¢. If we introduce k(#) according to Eq. [5] and

1() = L I r'G@Hdt’ [18]

the expression for S(f) may be written

S@) = ff o(r, v)e'® 1" Vdrdy. [19]
The expression can be further simplified if we introduce the direct sums
R=ro®ov
K=k®L [20]
Then
S(@) = f p(R)e’* RdR [21]

where dR signifies drdv. The vector K(?) will thus trace a trajectory in the phase space
spanned by the (four-dimensional) vectors R and the value of the Fourier transform
of p(R) is equal to S(¢) at each point of the trajectory. The function p(r, v¥) is thus in
principle obtainable by inversion of the Fourier transform of Eq. [21].

Unfortunately, the trajectory K() cannot, as a rule, be chosen at will because of
the functional dependence

dl/dt = (dk/dr). [22]

To some extent this problem may be overcome by varying the magnitude of the

gradient field. Thus, in the one-dimensional case (line scan method) we have, for a
constant G,,

k, = Gyt
I, = G122 = k%/2G,. 23]

This represents a family of parabolas in the k.l. plane with G, as a parameter.
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The rather loosely outlined applications suggested above should not be taken too
seriously. We believe, however, that the suggested method of presentation, consistently
applied, may prove useful for clarifying and comparing different methods of NMR
imaging. This method of presentation appears completely self-evident once it has
been understood, and it is believed that many unnecessary mathematical complications
such as the use of the so-called projection functions may be avoided in this way.

REFERENCES

-

P. MANSFIELD AND P. G. MORRIS, Suppl. 2, “Advances in Magnetic Resonance, The Principles of
Biological and Medical Imaging by NMR,” Academic Press, New York, 1982.

E. T. WHITTAKER AND G. N. WATSON, “Modern Analysis,”” Cambridge Univ. Press, Cambridge, 1962.

P. MANSFIELD AND I. L. PYKETT, J. Magn. Reson. 29, 355 (1978).

M. M. TROPPER, J. Magn. Reson. 42, 193 (1981).

L. F. FEINER AND P. R. LOCHER, Appl. Phys. 22, 257 (1980).

P. C. LAUTERBUR, Nature (London) 242, 190 (1973).

A. N. GARROWAY, P. K. GRANNELL, AND P. MANSFIELD, J. Phys. C 7, L 457 (1974).

A. KUMAR, D. WELTI, AND R. R. ERNST, J. Magn. Reson. 18, 69 (1975).

NS A W





