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Fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) are commonly
used as MRI biomarkers of white matter microstructure in diffusion MRI studies of
neurodevelopment, brain aging, and neurologic injury/disease. Some of the more
frequent practices include performing voxel-wise or region-based analyses of these
measures to cross-sectionally compare individuals or groups, longitudinally assess
individuals or groups, and/or correlate with demographic, behavioral or clinical variables.
However, it is now widely recognized that the majority of cerebral white matter
voxels contain multiple fiber populations with different trajectories, which renders these
metrics highly sensitive to the relative volume fractions of the various fiber populations,
the microstructural integrity of each constituent fiber population, and the interaction
between these factors. Many diffusion imaging experts are aware of these limitations
and now generally avoid using FA, AD or RD (at least in isolation) to draw strong reverse
inferences about white matter microstructure, but based on the continued application
and interpretation of these metrics in the broader biomedical/neuroscience literature, it
appears that this has perhaps not yet become common knowledge among diffusion
imaging end-users. Therefore, this paper will briefly discuss the complex biophysical
underpinnings of these measures in the context of crossing fibers, provide some intuitive
“thought experiments” to highlight how conventional interpretations can lead to incorrect
conclusions, and suggest that future studies refrain from using (over-interpreting) FA, AD,
and RD values as standalone biomarkers of cerebral white matter microstructure.
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BRIEF BACKGROUND

The popularity of diffusion MRI (dMRI) has increased dramatically over the past couple of decades,
and it is now commonly used for a wide range of clinical and research applications (Lerner
et al., 2014; Assaf et al., 2019). Indeed, it is quite remarkable how much, and even how many
different types of information can be gleaned from the endogenous diffusion characteristics of
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water molecules within our brains. For example, dMRI data has
been used to: (1) derive several different quantitative measures
[e.g., fractional anisotropy, axial diffusivity, radial diffusivity,
mean diffusivity (Beaulieu, 2002; Alexander et al., 2019); axial
kurtosis, radial kurtosis, mean kurtosis, maximum directional
kurtosis, axonal water fraction (Fieremans et al., 2011; Henriques
et al., 2021); neurite orientation dispersion, neurite density index,
isotropic volume fraction (Zhang et al., 2012; Faiyaz et al., 2021);
etc.] that reflect slightly different aspects of tissue microstructure,
(2) non-invasively map the brain’s white matter pathways using
deterministic (Mori et al., 1999) and/or probabilistic (Behrens
et al., 2003) tractography approaches (Maier-Hein et al., 2017;
Jeurissen et al., 2019), and (3) indirectly measure brain function
(Le Bihan et al., 2006b; Le Bihan, 2007; Abe et al., 2017).
It is therefore not surprising that researchers are leveraging
these techniques to study diffusion changes associated with
neurodevelopment (Lebel et al., 2019), brain aging (Beck et al.,
2021), traumatic brain injury (Hutchinson et al., 2018), and
variety of neurodegenerative disorders (Goveas et al., 2015) – in
many cases to correlate one or more quantitative dMRI metrics in
various brain regions with developmental, demographic, clinical,
and/or cognitive measures.

With that being said, along with the power and flexibility
of dMRI comes a number of complications, caveats and
limitations – and indeed, some excellent articles have been
written about common pitfalls associated with the acquisition,
analysis and interpretation of dMRI data (Le Bihan et al., 2006a;
Jones and Cercignani, 2010; Jones et al., 2013). These papers are
excellent resources, and expertly explain potential problems and
mitigation strategies associated with common dMRI methods,
and will therefore not be recapitulated here. Additionally, there
have been several excellent in-depth reviews published on the
biophysical interpretations of diffusion MRI signals (Beaulieu,
2002; Jelescu and Budde, 2017; Jelescu et al., 2020). Therefore, the
limited focus of the current manuscript is to briefly highlight and
discuss (in non-technical language) the potential “pitfall” of over-
interpreting fractional anisotropy (FA) – and for similar reasons,
axial diffusivity (AD) and radial diffusivity (RD) – in the presence
of white matter crossing fibers. Problems associated with complex
white matter fiber geometries are well established among dMRI
fiber tracking (a.k.a., tractography) experts, who have developed
various data acquisition and analysis methods to resolve these
issues (Maier-Hein et al., 2017; Jeurissen et al., 2019).

However, diffusion tensor imaging (DTI) is one of the most
well established and widely used dMRI approaches, with “plug-
and-play” MRI pulse-sequences and practically “push-button”
analysis packages, which makes it accessible to a wide variety
of end-users with varying degrees of technical knowledge. We
therefore aim to highlight how abundant crossing fibers are in
cerebral white matter, and explain in non-technical language how
this creates inherent problems for drawing reverse inferences
about underlying tissues based on FA, AD, and RD measures.
We will then walk readers through two intuitive “thought
experiments” to illustrate how conventional interpretations of
FA, AD, and RD measures can lead to incorrect inferences
about the underlying white matter tissues based on conventional
interpretations, and conclude by discussing some alternative

MRI methods that are likely more robust to white matter fiber
crossings. In so doing, we hope to warn DTI practitioners about
using FA, AD, and RD measures as quantitative biomarkers of
cerebral white matter, and to discourage future studies from using
these metrics in isolation to compare cross-sectional “differences”
between individuals or groups, longitudinal “changes” within
individuals, and/or to correlate with demographic, clinical,
or behavioral/neuropsychological data, which have been (and
continue to be) commonly reported in the dMRI literature1.

INTRODUCING THE PROBLEM (PITFALL)

Fractional anisotropy in particular (as well as AD and RD to a
lesser extent) has long been one of the most commonly reported
quantitative dMRI metrics. It can be obtained from dMRI scans
with even relatively low b-values (≥700 s/mm2) and a relatively
small number of diffusion-encoding directions (≥6 orthogonal
directions) (Alexander et al., 2007), is very easy to calculate (based
on the common tensor model) (Basser and Pierpaoli, 1996),
yields high test-retest and even inter-site/cross-scanner reliability
(Vollmar et al., 2010; Luque Laguna et al., 2020), and generally
shows high correlations with other quantitative MRI metrics
(Uddin et al., 2019).

Within the framework of DTI, AD is the amount of apparent
diffusion along the principal diffusion axis (AD = λ1), RD is the
average amount of apparent diffusion along the secondary and
tertiary diffusion axes (RD = [λ2 + λ3]/2), and mean diffusivity
(MD) is the average amount of apparent diffusion along each of
the three diffusion axes (MD = [λ1 + λ2 + λ3]/3). As its name
implies, FA is a relative measure of diffusion anisotropy within

a given voxel or region (FA =
√

1
2

√
(λ1−λ2)2

+(λ1−λ3)2
+(λ2−λ3)2

√
(λ1)2

+(λ2)2
+(λ3)2

),

which indicates the amount of diffusion in the principal direction
compared to the orthogonal two directions. The values of FA
are therefore unitless and inherently scaled between 0 (i.e., equal
amounts of diffusion in all directions) and 1 (i.e., diffusion in
only one direction). Empirically, FA values are uniformly low in
gray matter, high in most white matter regions, and by contrast
(no pun intended) are relatively low in focal white matter lesions.
Therefore, until relatively recently, the conventional thinking was
that all else being equal, higher FA values generally reflected
greater white matter density – except for a few widely recognized
exceptions with known crossing fibers [e.g., at the intersections
between the corpus callosum and the ascending/descending
corona radiata, as well as between the superior longitudinal
fasciculus and the corona radiata (Tuch et al., 2003)], where this
common interpretation was acknowledged to be problematic.
It has long been known that the restriction of water diffusion
in white matter depends on multiple factors, including: fiber
diameter, fiber density, membrane permeability, myelination,

1Since the intention of this paper is to guide the design and interpretation of future
studies, rather than to point out mistakes or limitations in previous work, we will
not pick on any specific papers that have used FA, AD, or RD measures without
considering these limitations. However, since the interpretation of these metrics in
this way continues to be a common practice, we feel that it is necessary to draw
broader attention to this issue.
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and the directional organization/coherence of these boundaries
(Beaulieu, 2002). Indeed, the complex interactions between these
factors and the resulting inability to ascribe apparent diffusion
changes to any particular cause, is why (Jones et al., 2013)
and others have advocated for researchers to exercise caution
when interpreting DTI data and avoid drawing conclusions
about microstructural or tissue “integrity.” However, because the
proportion of cerebral white matter voxels containing complex
fiber geometries and/or multiple fiber bundles in different
orientations (i.e., crossing fibers, kissing fibers, etc.) is now
thought to be at least 33% (Behrens et al., 2007), and is
more likely somewhere between 60 and 90% (Jeurissen et al.,
2013) – with many regions thought to contain as many as 3
or more intersecting fiber bundles with different trajectories
(Figure 1) – this makes the conventional “if some is good, more is
better” interpretation of FA values much more problematic than
originally thought.

DEMONSTRATING THE PROBLEM
(PITFALL)

The inherent nature of this problem, and its level of
complexity can perhaps be most easily illustrated using two brief
thought experiments.

Thought Experiment #1: Interpreting
Fractional Anisotropy Differences or
Changes (Increases and Decreases)
Based on the conventional interpretation, one might erroneously
infer that a higher FA value reflects an increased number of
microstructural tissue elements within the underlying white
matter (e.g., higher fiber density, lower membrane permeability,
greater myelination, etc.). However, this is not necessarily the
case. Due to the presence of crossing fibers throughout the
majority of cerebral white matter, disproportionate atrophy or
degradation of one or more fiber bundles – along with the relative
preservation of other fiber bundle(s) – could result in a seemingly
paradoxical increase in FA, despite an actual decrease in local
fiber density, myelination, etc., (Figure 2A). In fact, increased
diffusion anisotropy in the presence of Wallerian degeneration
due to chronic lacunar infarcts has been reported (Pierpaoli et al.,
2001), where degeneration of motor pathways in the rostral pons
caused the transverse pontine fibers to become the dominant
pathway – ultimately changing both the FA value as well as the
principle diffusion direction. It should be noted, however, that
if the Wallerian degeneration had instead targeted the pontine
fibers, the motor pathways could have remained unchanged, with
FA still showing an increase and relatively little effect on the
principle diffusion direction.

Although it is perhaps self-evident, we would briefly point out
that the opposite effect can also be true – where FA values could
decrease due to a disproportionate increase in one or more of
the non-dominant fiber bundles (e.g., during neurodevelopment,
neuroplasticity and/or neural repair). For example, if the motor
pathways remain constant while the transverse pontine fibers

FIGURE 1 | Color encoded maps of white matter fiber directions
(red = left/right; green = anterior/posterior; blue = superior/inferior). Colored
regions indicate white matter locations with: (A) at least one fiber population
(and the orientation of the main bundle); (B) at least two fiber populations (and
the orientation of the secondary bundle); and (C) at least three fiber
populations (and the orientation of the tertiary bundle). Even a cursory visual
comparison of (A,B) reveals that most white matter regions contain at least
two fiber populations with different orientations (i.e., crossing fibers), and a
closer inspection of (A,C) reveals a non-trivial number of regions with three or
more fiber populations with different orientations. (Note: Figure modified and
reproduced with permission from Dr. Ben Jeurissen and John Wiley and Sons
Publishers via the Copyright Clearance Center. Original version published in
Jeurissen et al., 2013).

mature (or undergo neural repair, based on the example above),
one might observe lower FA values in the rostral pons, despite a
net increase in local white matter fiber density.

Thought Experiment #2: Interpreting
Fractional Anisotropy Equivalence or
Stability
Based on the conventional interpretation, one might erroneously
infer that equal FA values reflect equivalent underlying tissue
composition. However, as in the example above, this is not
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FIGURE 2 | Cartoon depictions of a voxel containing three white matter
crossing fibers (i.e., vertical, horizontal, and through-plane fibers) and the
corresponding diffusion tensor and fractional anisotropy (FA). (A) On the
left-hand side, FA = 0 because there is no dominant fiber direction (i.e., same
diameter, density and integrity of fibers arranged orthogonally), where water
diffusion will be constrained equally in all directions. On the right-hand side,
the vertical fibers remain unchanged while the other two fiber bundles (i.e.,
horizontal and through-plane) are decreased, such that λ1 becomes larger
than λ2 and λ3, resulting in an FA increase despite a net white matter fiber
reduction. (B) On the left-hand side, there is a principle fiber orientation (i.e., in
the vertical direction) and a corresponding FA > 0. On the right-hand side, all
three fibers experience the same amount of tissue damage, such that all three
eigenvalues (λ1, λ2, and λ3) are increased proportionally, resulting in a
constant (unchanged) FA despite a net decrease in white matter fiber density.
Because it is a relative measure, FA cannot provide quantitative information
about net tissue differences/changes in the presence of crossing fibers. Bold
arrow represents a relatively large increase (λ1 in part A), thin arrows represent
a relatively small increase (λ1 and λ2 in part A), and medium arrows indicate a
moderate increase (λ1, λ2 and λ3 in part B).

necessarily the case in the presence of crossing fibers either.
Indeed, anytime there is a proportional change in the three
eigenvalues (λ1, λ2, and λ3), FA will remain constant. Therefore,
in the case of neurodevelopment, aging, traumatic brain injury,
and/or neurologic disease, real differences could be missed if the
underlying fiber bundles in a given region differ in the same way
or change at the same rate, relative to each other. For example, if a
multiple sclerosis (MS) lesion or traumatic brain injury damages
all of the underlying fiber bundles within a particular region
equally (e.g., increased membrane permeability and decreased
myelination leading to an equal reduction in λ1, λ2, and λ3), FA

will appear unchanged despite potentially significant alterations
in the underlying tissues (Figure 2B). Of course, the opposite
effect could also be true during neurodevelopment, where FA
could appear constant if the all of the constituent fiber bundles
were to mature at the same rate (i.e., equal increase in λ1, λ2, and
λ3).

With that being said, it is perhaps important to briefly
comment on the difference between forward and reverse
inferences with respect to FA stability. For example, the
aforementioned intra-scanner and inter-scanner repeatability
studies acquired test-retest scans over a short interval from
the same healthy control participants (Vollmar et al., 2010;
Luque Laguna et al., 2020). Given the tightly controlled
nature of these experiments, no underlying tissue changes
were anticipated, so it was reasonable to expect stable FA
values (i.e., forward inference). However, this is not the same
as trying to infer a lack of tissue changes from stable FA
values under less well-controlled experimental conditions (i.e.,
reverse inference).

GENERAL DISCUSSION

These examples hopefully highlight how biophysical
interpretations of FA, AD, and RD values are problematic
in the presence of white matter fiber crossings, and how
interpreting them to reflect similarity, stability, differences or
changes in tissue microstructure can potentially lead to Type
I (false positive) and/or Type II (false negative) errors. It is
perhaps also worth noting that ex vivo MRI and histological
studies of the macaque brain have revealed that white matter
crossing fibers become even more apparent upon higher
resolution and more detailed examination, suggesting that
this is a fundamental problem that cannot be overcome
by scanning at higher resolution to reduce partial volume
effects (Schilling et al., 2017). Therefore, there is no way
of controlling for these effects or estimating the prevalence
of Type I and Type II errors (which could even occur
simultaneously in different brain regions) inherent in any
reverse inferences between FA, AD or RD and the underlying
tissue microstructure.

For simplicity, we have focused on FA in our examples, but
it should be noted that AD and RD are confounded for similar
reasons. It was pointed out using simulations and a review of
empirical investigations more than a decade ago that changes in
AD can induce spurious alterations in RD and vice versa in voxels
containing crossing fibers (Wheeler-Kingshott and Cercignani,
2009), which we now know account for the majority of cerebral
white matter regions.

This does not, however, mean that all of the previous
interpretations using these metrics are necessarily wrong –
especially in cases where the findings have been corroborated
using other imaging metrics. For example, there are obviously
certain white matter regions with very few crossing fibers (e.g.,
corpus callosum, corticospinal tract, spinal cord, etc.), where
the interpretation of these metrics is more straightforward.
Moreover, as pointed out by Jeurissen et al. (2013), even
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regions with crossing fibers, many observed differences/changes
in FA, AD and/or RD are likely to reflect actual anatomical
and biophysical phenomena, as long as other pitfalls in
the acquisition and analysis have been avoided (Jones and
Cercignani, 2010). However, it suggests that strong biophysical
interpretations and conclusions should not be drawn using
FA, AD or RD measurements alone, and that these should be
complimented by other brain imaging metrics that are more
robust to the presence of multiple fiber populations and complex
fiber geometries.

POTENTIAL ALTERNATIVES TO
FRACTIONAL ANISOTROPY, AXIAL
DIFFUSIVITY, AND RADIAL DIFFUSIVITY

All MRI methods have limitations that researchers need to
consider when drawing conclusions. Therefore, with the caveat
that each of the following methods has their own limitations,
we would like to briefly present a few alternatives (albeit not
a comprehensive list) of alternative quantitative MRI methods
that are likely to be more robust to the presence of white matter
crossing fibers.

Staying within the DTI framework, we would suggest that
either the MD (i.e., mean apparent diffusion along the three
tensor dimensions; MD = [λ1 + λ2 + λ3]/3) or the Trace
(i.e., total apparent diffusion along the three tensor dimensions;
Trace = [λ1 + λ2 + λ3]) values are likely the most robust
and interpretable metrics for drawing reverse inferences about
the underlying tissue characteristics. Unlike FA, these are not
proportional/relative metrics; and unlike FA, AD, and RD, they
not only account for, but equally weight, the amount of diffusion
along all three axes of the diffusion tensor. As a result, MD
and Trace values are theoretically more robust to multiple fiber
populations and/or complex fiber geometries, and are likely the
best DTI indicators of how tissues are constraining diffusion
within a voxel. In both of the theoretical thought experiments
outlined in Figure 2, MD and Trace values would increase as
expected (owing to less restricted diffusion within the voxel).
This is also supported by empirical findings that MD is more
closely related to neurite density than FA, AD or RD measures
(Genc et al., 2017).

Within dMRI, but including more advanced diffusion analysis
approaches, there are several models that are more robust
to crossing fibers. These include, but are not limited to:
diffusion kurtosis imaging (DKI) (Jensen et al., 2005; Jensen
and Helpern, 2010), neurite orientation dispersion and density
imaging (NODDI) (Zhang et al., 2012), tensor-valued diffusion
encoding or b-tensor encoding (Szczepankiewicz et al., 2016,
2019), and novel fixel-based analysis approaches (Raffelt et al.,
2017). For example, DKI data acquired using conventional
hardware and reasonable scan times can resolve crossing fibers
significantly better than conventional DTI (Glenn et al., 2016),
and certain DKI metrics such as kurtosis fractional anisotropy
(KFA) and quantitative kurtosis tensor measures (e.g., radial
tensor kurtosis) are likely more robust to crossing fibers (Hansen
et al., 2016; Hansen and Jespersen, 2016). Alternatively, NODDI

can estimate neurite density in dendrites and axons, as well
as orientation dispersion (i.e., fanning of neurites), which are
factors that contribute to, but are distinct from DTI-based
FA measures. Orientation dispersion estimates the angular
variability between neurites and provides a better measure
than FA in regions with fanning or crossing fibers. Moreover,
tensor-valued diffusion encoding allows the estimation of a
microscopic fractional anisotropy (µFA), which disentangles
orientation dispersion from microscopic anisotropy at a sub-
voxel level and could overcome the problem of crossing fibers
(Szczepankiewicz et al., 2015). Finally, recent fixel-based analysis
approaches have been proposed to characterize a specific fiber
population within a voxel (i.e., a “fixel”) (Raffelt et al., 2017).
Modeling individual fibers at the sub-voxel level like this
could lead to more sensitive measurements and more detailed
understandings about tissue degeneration in various disorders
(Finkelstein et al., 2021).

Beyond dMRI approaches, other quantitative MRI techniques
such as calibrated T1w/T2w ratio mapping (Ganzetti et al.,
2014; Uddin et al., 2018), inhomogeneous magnetization transfer
(ihMT) imaging (Manning et al., 2017; Swanson et al., 2017),
and T2 relaxation-based myelin water imaging MWI (Prasloski
et al., 2012; Lee et al., 2018) are likely less affected by fiber
orientation; and in the case of ihMT and MWI likely also provide
more myelin-specific information than can be obtained with
more general measures based on DTI or T1w/T2w ratio metrics
(Mädler et al., 2008; Ercan et al., 2018; Uddin et al., 2019).

CONCLUSION

We now know that the majority of cerebral white matter
voxels contain multiple fiber populations and complex fiber
geometries, and that increases, decreases, and indeed even
stable FA, AD, and RD measures become difficult (if not
impossible) to interpret in terms of the other underlying
tissue microstructural properties (e.g., fiber diameter, fiber
density, membrane permeability, myelination, etc.). On the
contrary, given that these measures are highly sensitive to the
relative volume fractions of the various fiber populations, the
microstructural integrity of each constituent fiber population,
and any combination of changes between these factors, extreme
care should be taken when drawing conclusions about the
biophysical underpinnings of FA, AD, and RD values. Except
for specific regions (e.g., corpus callosum, spinal cord, etc.)
where complex fiber geometries are not generally be expected,
we would encourage future studies to use other MRI metrics
that are more robust to the presence of crossing fibers – either
instead of, or (at minimum) in addition to DTI-based FA, AD,
and/or RD values.
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